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INTRODUCTION

—— . —— i s

It is the purpose of this text to instruct engineers in the design of
optimum linear systems. An optimum linear system is defined as an uzhiased,
linear system which performs a desired linear operation with the minimum mean
square errora. Tha’basio cause for the system error is usually an external
‘disturbance of a siﬁple statistical nature. System error need not be cau;ed
by a disturbance, howsver; the design technique is also applicable to tran-

- sient design of systems with limited power capabilities.

The presentation of the technique is directed toward the design and ;hdl-
ysis of mobile-vehicle control systems, systems in which the control unit and
the element controlled (the vzhicle) are independent except-for radio or op-
tical links., Noise, diétu}bancea of any kind, and deliberate enemy jarming
may enter the system easily. The engineer's job is first,the design of the
best control system umder the circumstances, and second, the analysis of per-
formancé data to determine the degrece of success achieved.A In a very resal
sense, this particular problem is the sum of many problems including filtering
signals from noise, designing stable control systems, preventing internal
saturation of a servomechanism, and analyzing noisy records. Figure 1 indi-
cates the order and relationship of the topics which describe the new
technique,

The technique and derivations are described in terms of Laplace transforms.
The author has assumed the reader to have a working knowledge of Laplace trans-
forms roughly equivalent to that attained by reading Gardner and Barmes,
"Transients in Lineaf:Systems." No knowledge of statistics is assumed. No
statistics is presented in this development which cannot be learned in a

few minutes.
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Certain portions of this text mst be understood thoroughly in order
that the engineer be able to do more than plug in and grind out the funda~-

mental equation:

| | Hm[i@i‘,]
H(sozntimm T () W(-5)

physically
realizable-

The significance of the equation will be readily appreciated as th§ develop~
ment proceeds, but it is not always simple to formmulate the problem at hand
in such a way as to make the equation applicable. Regardless of background,
the reader must understand Sections I - X before reading further sections,
Sections XX, XI1I, and XTII present the minimum theory necessary to solve
pro’biems. . Section XIV outlines the remainder of the text in order that the
reader may decide which further sections are directly related to his immedi-
ato problem.

The existence of the technique is directly attributable to Norbert
Wiener, Professor of Mathematics at M.I.T. A, K. Kolmogoroff derived some-
what similar results but in a less useful form. With few exceptions, all
extensions of Wiener's work were done in many places by nany different people, .
all at about the same time. The derivations in this text are original in the
sense of being independently derived at J.P.L. This text could well have
been written by se\;eral other engineers at J.P.L. W. H. Pickering, F. W. Lehan,
and R. J. Parks initiated and guided the work. C. W. Bergman, R. B. Conn, E.
Rechtin, W. F. Sampson, R. li. Stewart, and D. C. Youla continued the develop-

ment. This text is one result.
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I. CRITERIA FOR OPTIMIZATIOR

Some amazingly violsnt arguments can ensue on the subject of optimi;'
gation, Because of the great variety of possible systems, all pertorming
the same task, it is difficult to get agreement even on the relative values
of cost, reiiability, simplicity, and accuracy. This disoussion will be
limited to considerations of accuracy for an extremely importan£ reason -
when interference is present, it is not poss:ible to make # system as accurate
as we please. We (possibly) can increase cost without limit, and can make
a system as reliable as desired, but we arc definitely limited in the at-
t;inable accuracy for the system. The limiting accuracy of the system
depends primarily upon the characteristics of the input functions -- loosely
speaking, upon the characteristics of signal and noise -- and is realized
only by the optimum system. If this limited accuracy is insufficient for

- our purposes, we must either change the input characteristics or abandon
the attempt. No ammount of cost, complexity, or ingenuity can yield any
" improvement.

The existence of an optimally-accurate sysfam and a knowledge of its

associated "irreducible error" is useful even though such a system may oc-

casionally be too complicated, costly, and/br unreliable to build. Such a
system provides a good standard for evaluation of proposed substitutes. It
is often possible to design substitutes with accuracies within a fow percent
of the limiting accuracy.

Let us define an optimum system as optimum in an accuracy sense. Again,
there is much room for differences of opinion. For example, if the problem

is to transmit information in the precence of noise, systems of differeant
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relative acouracies may be designed depending on the coding (AY, Fii, PCM, ran-
dom) and upon the channel noise level. If the information may be qﬁantized,thg
number of practical codes may be still further increased. However, forvggoh
transmitted code and assumcd interference, there still exists an optimum re-
.-beiver designe. The problem becomes even more intoresting if the interference
18 assumed 1ntelligent,.i.e.; if the interference is always of the‘worqt
possible type vith respect to the selected code. This text will not consider
such problems in the theory of games, but will be restricted to optimum systems
with respect to spoecified inputse.

If all inputs to a system are completely specified functions of time ex-
cept for certain paraneters such as absolute magnitude or exact time of occur-
rence, elimination of the effects of any of the_individual inputs may usually
be accomplished identizally. 60 cycle "hum-bucking" is one example of complete
interfercnce elimination. Output hum consists of a pure 60 cycle tone which is
eliminated by addition of an equal and opposite 60 cycle tone to the output. As
another illustration, if the inputs‘are exactly knovn except for three constant:
parameters, three operations are usually sufficient to:yield error-free per-
formance. If the inputs ;re statistical in nature, howcver, there are so many
unlmowns that exact separations are impossible. We cen only hppe for good
performance averaged cver many tries. |

It is important that we lmow bclorcharnd in what way the various inputs
.differ from each othere If all inputs eriter the system at the same point and
all arc alike, separation is impossible. Conversely, the greater the 4if-
ferences, the better the scparation. Inputs may be described by their exact
time dependence, by their eXpected time dependence, by their complete proba-

bility functions, or by their corrclation functions (er spectral densities).
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Statistical descriptions are comparatively weak, but they may he the only de-
scriptions available. To quote Vijener, "Statistical prediction is essentially

a method of refining a prediction which would be perfect by itself in an idea-
lized case but whioch i: corrupted by statistical errors, either in the obsorvoci
quantity itself or in the observation., Geometrical facts must be predicted geo-
metrically and analytical facts analytically, leaving only statistical facts to be
predicted statistically.”

We complete the specification of an optimum system by agreeing on a mathe-
matical description of system accuracy. If no restrictions are placed.upon
either the probability functions of the inputs, or on the type of operations per-
formed, it is possible to specify the accuracy of the system in many different
ways. For example, using the "maximum likelihood" criterion, one attempts to
- form the observed input by the addition of samples selected from known distri-
butions in such a way that the joint probability of occurrence of the samples
is maximigzed. The selection process may well be non-linear. A 1inear.operation
is describable by an equation of the first degree in the dependent variable.
Such equations may be time-variant, integro-differential or difference, but may
not involve opérations on other than the first power of the dependent veriable.
Accuracy specifications involving probability functions generally leaq not to
explicit specification of the operation to be performed, but only to certain
criteria on such operations. The field of non-linear mathematics is not yet
in a‘condition to be exfensively exploited by engineers. E;ch non-linear
problem is approached independently. No general discipline is available at

this date.
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If we limit ourselves to linear systems,* not only do we enter a wvell-
developed field, but we can also define system accuracy in a simple way. Let
x(t) = desired output at time ¢

actual cutput at time ¢

xo(t)
(%)

Let us repeat. the experiment many times and observe the performance at time t.

x(t) - xo(t) = error at time t

The performance will be different for each experiment since the input inter-
Terences will never be exactly alike. Not knowing beforehand the exact time
dependence of the interference, we can never guarantee perfect porformance
(zero error) for any one experiment. After observing many experinents, however,
we certainly want to notice good overall performance. We desire no error on the
average. Letting'é bar signify experimental (ensemble) average, we require the
condition:

E(®) =0
Systems satisfying this condition are called "unbiased."” The condition is not

& guod measure of comparative performance of various systems. Almost any sys-

tem will yield g£(t) = O inazmuch as the average interference is usually zero.
Let us keep this condition as & desired feature and investigate several addi-

tional measures of syslem accurscy. Inasmuch as negative errors are probsbly

as serious as positive errors, the measure should so indicate.

*The restriction to linear systems is not as stringent as it might seem. Dis-
turbances produced by most interference phenomena are characterized by Gaussian
distribution funciions. Any linear operation on such disturbances will yield
an output which also has a Gaussian distribution function. If we restrict our
desired operations tc linear operations (i.e., do not look for the square of
the input, ctc.), it has been shown that for Gaussian type input functions the
optimum linear system is also the optimum of all systems. In adcdition, all
standard descriptions of accuracy reduce to the one presented here.
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Large errors are probably more serious than small errors.* Two meoasures of

accuracy are of particular interest:

g2 = |g|

Of these, 6‘-3 (the rwan square or variance of § ), is in wide use, has been
extensively developed, and leads to lincar systems. The second,gf;i s 18 ©X=
tremely difficult mathematically, probably yields performance similar to z-: ’
and yet probably requires non-linear operations. Thus ou? definition of an
optimum system: AN OPTIMUl: LINEAR SYSTEM IS DEFINED AS AN UNBIASED, LINEAR -
SYSTEM WHICH FERFORYS A DESIRED LINEAR OPERATION WITH THZ MININUN KIZAN SQU.‘RE

ERROR.

*It might be agreed, however. that system design should ipnore a fantasticelly
large error on the basis that if such an error does occur, that particular ex-
perirent is worthless anyway, and should not be allowed to influence our dec’sion
on an optimum system. Such an argument serves to reject criteria such as ;™ _;:‘i-
etc. A system operating with an g criterion would tend to average noise

wecaks and disrogard errors close To zero.
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IT [ELEMENTARY CALCULUS OF VARIATIONS

The optimum aysﬁom has bron defined as that system which minimizes a par-
tiocular quantity, the mean square error. If our system is completely specified
except for one parameter such as the value of a particular resistor or the gaiﬁ
of a particular servo loo‘p-, the solution for an optimum system is quite simple.
We express tho error -0'2 as a function of the variable parameter (r) and use
the urual calculus technique

d *
d r

to find the minimum. This equation spocifies a stationary point only (maximum,

=0 (1)

minimm, or inflectioﬁ point) and therefore a check is usually made of the sign-
of L’ /d.!t:.' . A positive sign indicates a true minimum, If the sys-
tem is specified except for possibly four or five parameters, the generhl pro-
cedure is the same. True minimum cen be realized previding the f&ur or five

- slmiltaneous equations -

45 45" . ds’ (2)

-— 0 —_ ce e : —‘-—O
Y (ikz © d,K5

can be solved properly. It is not generally true, hcwever, that by making

more and more paresmeters variable we comé nearer and nearer to the optimum
system. The very act of writing the. error as a function of certain parameters

also defines the form of the system. For example, calculation of the effect

of varying the value of a given resistor depends upon knowledge of the rest of-
the circuit. In particular, there is no way of lmowing which of the circuits
below will yield the bost performance without laborious calculation. MNore

important, there is no way of knowing whether the best circuit is even included
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in this set.

?
=
.S

L
!

ad

FIGURE 2
Examples of Circuits with an Adjustable Element

--Even making all the elements variable will serve no useful purpose: There is
no guarantee that the correct type element is located in each branch.

It is probably not surprising that a solution exists which not only giyes
the form of the best circuit, but also the valués of all the elements in it,

It is almost the engineer’s creed that nothing 1s impossible., It may be sur-
prising (1) that the concepts and techniques are gquite simple and (2) that most
of these corcepts and techniques are 250 years old.

The magic mathematics is the calculus of variations. Its prime uses it
seems, have been to prove that the shortest distence between two points is a
straight line, or to derive equations of motion of a system in peculiar co-
ordinate aystems. For our purpoces both such problems are unnecessarily com—
pliceted. ’Thg basic problem in the calculus of variations is the minimization
of an integral whose integrand is some function of the system. As we shall see

later, the mean square error of a system is expressible as an integral whose
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‘integrand dejends on thc system transfor function, For the present, the exaot
way in which we obtain some integrals as are presented below is not important.
of Limwdiate importance ir the question: what should H(s) be as a function of

e to minimize the value of ths integral?=

1
Il = -S.[szﬁl(s) +H_z:7] ds
o 1
Iz = j {‘_Hz(s)f cos 8 +[1 - Hz(sﬂz e-s}ds
0
o (3)
I; = .J,{.@l(S)[HS(SZ)Z + §2(S)[1 - H3(S)]2}ds
-joo

where §1( s) and §2( s) are knowm,

The basic logic of the calculus of variations is as follows:
| l. Assume that the correct answer is H,(s).
2. Pick out any other function of s, Vl(s)
3. Add q(s) to H (%) , but control the addition by a numerical
variable £ . Th variable § is not a function of s. It is the

only variable, however, since both Hc(s) and n(s) are

* Answers:

Hl(S) = s Hz(s) = e-s HS(S) ¢ Z(S)

e® + ocos s B(s) + (s)
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presumed mown. Then write H(s) near Ho(s) as:
Bs) = E(s) +£r(s)

4. Investigate the effect of changing £ on the integral of interest.
Since we have assumed that we know H,(s) and n (s) we could, fornally,

at least, plot the integral (I) as a functionof &

FIGUEE 3
Value of the Minimized Integral as a Function of the Variation &

By hypothesis I for £=0 is the minimum I since H(s) for £€=0 is
equal to the Tight answer Hy(s).

5. Pick out many y¥s) and plot the resulting I's.
y ¢ p

T n, "
\X_Z/ M,

&

FIGURE 4
Variation of the Minimized Integral as a Function of £ and rL(s)
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It now bacomcc apparent that if !’((.',‘) is not too unroascnable the chioice
of Vt(b) docn not effces the Tact thet at £=0 vie hieve ¢ miniimmt, i».e..

thot ir'o “)' oL of n(S)

LLE = 0 (4)
o &
£ -.c

3o car thie lagic, tihe tochaique for solving for the H(g) which mininizes

the inte;ral I is:

1. Substitute }_*I (5) +ef(s)]  ror iu(s) in the Lohuirad

2. Tind
4 1(e) _
d € “t’:o - °

3. lake this equation truz regardless of ¥} (s)

2
If nccessary, chec the sisn of ths second derivative d I/ d&

Example:
1l
I = j[ s2 H(s) + :;4/ I’\:.)J ds
0
1 ” 4
;= s | Hfs (s . ds
(e ) of i [H{, ) +en(s)] + YR YT }
1 4
ae) - [{sq» - = e ] o
dg 0] [I?o(s) + EQ (s)J
) ¢ : 2 " as
%.I’}E—Lt=o 5( MS)[ i i H(s ~

which is zero indeperdent of ¥](s) only if

Ho(s) = + g

’«‘.)r “stationary ary »oint. Tho condition for & nininun is a Dool'hve sirn of
d I /d E 2 at £= 0 , independent ol “hc choice of ‘1 5,
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The positive sign yields a minimum value for the integral.

Problem 1 a: Find the funetion 1(s) which minimizes I3 in the text.

Problem 1 b: Find the function H(s) which minimizes

[ o 12y,

Problem 2: It is also possible to solve normal caleculus minimization prob-
o lems by the variational method. The variational method used in
this way is somewhat like using a cannon to kill a moth, but the
use is s5till legitimate. The only difference in logic is that
N 1is an arbitrary value rather than an arbitrary function.
Solve for a minimum of

y= xz - 2x

L]
"

using the variational technique.,

For the mathematical philosophers among the readers, the integral is not
the only mathematical operatién to which this technique is applicable. Any
operation is wvalid which reduces the performance of & system to a single num-
ber. A summation of discrete values is thus legitimate, as are such parameters

as joint and marginal distributions in probability problems.



EP 204
~15-

IIT CONSTRAINTS

A conalraint is a restriction or condition imposed on the solution of a
problem. Constraints in optimization theory may either reduce system per-

formance or increasc it, dopending on the particular constraint. Constraints

such as

1. The available power is limited at certain points within the system,
2+ The system must be physically realizable, and
3. Certain functions of time (polynomials or sine waves) must pass

through the system without distortion

will all chang  rstem performance from that of the unconstrained system.
Constraints are encountered on all levels of calculus.* A typical
calculus problem involving & constraint is:

What is the minimum value of

g = Vi-@aP -2

under the condition

x+y+sz = 1 2

Of more direct interest to us is the analogous problem in integral form:

What is the minimum value of

1 4
1 = g[szm) e,

under the constraint

1
. J[ Hs)]das = 2.0
0

* Sokolnikoff, Advanced Calculus, page 327

P‘
]
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srobizas involvy2 sin;le vonstraints only. Probloms way he pro-

nosd with eny wumber of conctrcinta. For cxarslo, we —ight wdd Ghe o

straint

on Yo The sccond 1llustrative wreblcoize The constircinis ull

b

::TORA rey

1

2
I - = ______"_____.__ ds = 1.2
0 As)

233333 Lthe

-3

that, being constants, their variation with € is zoro. In the

abuve exennlc, if the substitntioz 1 ( ) +& V'L( ) rwrs rade in I, ond I

Lot t B 3
e, if

CI. () d -
Al = ___ (2.0) o
L &E=0 d§
¢ I.(e) i = 4 @an=) = o
de  le=o0 dt

k. uned /\l('t‘n? so-crlled Lugranze rmliinliers) orc corstunts, it is

coririnly truc thad

i
iz - a1, -
[ i3y 4 /\'.ﬂ I~ & ,\Z .__LI]I _ = 0 (5)
1€ at : 4|E

The avove

is Moth o

equation is a spoeial way of suhstituting I, and Iz into Iy be-

fore diffurcntiation, It can be shovm that

< | =
da - + - 0
_a (I‘ + I\'Iz ’\215 1
a © t=20
~eessary and safficiont to sawcify a atationary value of I4 under
aints I2 and _’{3. I3 this partienlar »reblem, thsr:forc, the pro-
1 ] '_2
4 As T
) r 2 5 + A H -~ __-'_..._ ds
+ AT = s B +"v bl
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in the same way that I was minimized alone.

EP 204

The result of the minimization

is the equation

2
+ 8 +)2

H(s) = - 8

s?‘l'll

The oonstants AI: and Az are evaluated from the equations I, = 2,0 and

13 = 1.2.

Notice that the minimization procedure is symmetrical in/ll, I, and

Iz. There is no difference, therefore, between minimizing I with I, and

Is fixed, between minimizing I, with Il and 13

fixed, and between minimizing

13 with I, and I, fixed. This symmetry is oocasionally useful in re-stating

a problem; symmetry will be used in section XIX in precisely this way.

Problem 3 ¢

¢ Find the H(s) which minimizes

1
1, = J(l
0

under the constraint

1
A
3 H(s)
Problem 4: Find the h(t) which minimizes
- +T
2 j 2
N = h(t)dt
~T
under the constraints
+T
1 = f n(t) at and
~T

- s2 ) H(s) ds

-..;;...(I, tA L)z mwn T
AT - @ A
z i [ - )H(s)-f;‘:s’ 1;,

Lot Hest= HEy+ e i)

Mﬁpudz_:/ =0
<966:7} )

N [ [-s97¢0 - A;(g];s
€ ° (w97

Jd 2E
. ‘;64-—0:0 e opeanad

ﬂfﬁ)-_t 23 cliooe

[H¥ea)s = N
JAay

N jr-r /AJ }\

&T_”’.oj:’ ,t

1.0

4T

o = j + h(t) dt

~T ( ‘ o
/ = I..‘-fiu’/-iﬂl)a—sl)cls
0

= -
VN - q
. 1T
H¥ 5= f_

V=



EP 204
-18-

IV. CURVE FITTING AND WEIGHTING FUNCTIONS

The idon of optiﬁizing system porformance is almost as old as the
calchlus jtself. One of the first problems in statistics is that of fitting
the best analytical curve to a set of data points. This problem is worth a
defailed study because it lends loglically to such concepts as weighting
functions and matched filters, Let us solve the problem in the classical
manner first., Llater we shall solve the same problem using variational
techniques under constraint, Most of the basic ideas of optimization
theory will appear in the course of these solutions.

A. Classical Statement of the Curve Fitting Problem

.Every optimization problem requires certain a priori assumptions.
The assumptions in the classical curve,fitting problem are:

- 1. A mechanism exists which is producing a perfect, disturbance-free
function, (An oscillator is producing a perfect sine wave.  An object
is moving under no external forces.)

2. The form of this function is Qnown, although certain parameters
are unknown. (Let the function be x(t) where t is the independent
variabie. Then some examples of functional form might be
x(t) = a + bt
x(t) = asin(t+b)
where the parameters a and b are te be determined from the data.)
3. Our discrete observations of x(t) are perturbed by a disturbance
of statistical nature, In particular the disturbance has zero average
value and a (Y; mean square value. The statistical characteristics‘of

the disturbance remain the same throughout the interval considered.
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4, The criterion for optimization is the minimization of

K 2
2 .
o = ) - <, ] (6)
— estimate data
k=1
. whero K is the total number of observation points, x(k)estimate

i8s the functional form with appropriately chosen parameters, and

x(k) represents the observed values,
data

I

. x - x
x . estimate data
. Pl A
o
« 2 7"
- .

k

FIGURE §
Typical Data Plot

The standard presentation of this curve fitting problem usually mentions
a fifth assumption but seld :m adds an explanati;n. The fifth assumption:
the disturbance is such that all observations of it are lndependent. Thig
assumption makes the overall field of discrete statistics considerubly simpler,
but immediately precludes the extension to the continuous case. 1In the"cbn-
tinuous case, the samples are infinitely close together., A statement that

adjacent samples are still independent under these conditions is not only
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unbelievable, it also leads to mathematical explosions. The most important
use of the independence assumption is in the proof that the optimization
oriterion of assumption 4 yields the best possible discrete estimator -1n the
ensemble mean square sense., Let us deliberately ignore the ind.ependenoe
assumption for the moment and note the consequences later.

The problem in curve fitting can thus be stated as follows. Under the

four given assumptions, what is the best x such that we minimize
i estimate
X
* 1 W]
S - [ x(k)es‘l::i.!ma‘t:e data]
k=1

B, Classical Solution of the Curve Fitting Probiem

For purposes of illustration, let us assume that the data points are
"equally spaced and that the assumed functional form is
x(k) = a + b X

The estimated value of x(k) is given by x

x(k)* = a* + pk

The mean square error 6'2 is given by
K

2
2 —
: _ : *
S = _>- [ ax + bk - x(k)data]
k=1
The minimum value of which is given by
2 2
A8
AL - 26 _,

ae 2 b*
These operations yield

K
0 = S l"a’ +b'k - x(k)da‘ta ]
k=1
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~2]le

and

"
L

K
o0 = E ‘[k(a‘ + P‘ x(k)data)]
Xx=1

*
Solving for the parameters 2’ and b

- -3 ‘Q"!
a¥ = - Zkz Zxda‘ha + Z k Akxdata
-k ¥ o+ ()
e . <1
‘b‘ = + 23 k Z xdata - K ZJ k xdata

-K Zkz + (2. x )

C. Extension of the Classical Solution

The above equations specifying the estimated values of the parameters are
so complex in appearance ¢that an extremely important concept is often missed.

Noting that K, 2 k and Zkz are all constants, we may re-write the equations

ass
K

+ C> llil,_Aa - Bak} x(k)data

k=1

X -
»* = __Z: { A - B‘bkl x(k)data
k=1

where Aa.' Ba’.‘"b and B, &are constants dependent only on K. The process of

(7

estimating the parameters thus consists in weighting each data point according
to an appropriate weighting function EA - B k] and summing over all data

points. It is interesting to superimpose the weighting functions on the data.
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*data ~ dat,a L
~ - ,. ] s . /
Wb ) \'~,

<., %L\ Weighting anction for b*
. LI L4 \
¢ \
0 i L N K
Ta ™~ Teightihg function for a®

™~

e <

FIGURE 6
Weighting Functions

The similarity in form between the weighting functions and the functional

form of x(k) occurs whenever the assumed form of x(k) is a sum of functions

with unknown coefficients (and the noise samples are independent).

Problem 5: Acsume a form x(k) = a. fl\k) + v (k), where f,(k) and
f2(k) are known functions of ke Show that, as far as this
type of optimization is concerned, the weighting functions for
a* and b* are of a similar functional form,

Problem 6: A text in statistics claims that the problem of estimating a
and b in the equation x(k) = a ™PX can be accomplished by
taking logarithms of both sides of the equation and treating
the system as linear, _Show that this process does not minimize
23 (xestimate—xdata) as was required for the best estimate.

This similarity in form of the weighting function to the assumed data function

#11l a: =ar frequently in later discussionse. The similarity is again evident
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in matched filter networks, finite-order filter networks, and cross-correlation
detection networks.

D. Mean Square Error of the Estimated Paramcters

If the disturbance vroducing the data scatter is strong, we should expect
our estimates of prrameters to be much less accurate than if the disturbance
is weak. In particular, if G'g is the mean square value of the data scatter,
Ws is the weighting function for the parameter b, and the datg scatter samples

are independent, then the mcan square error on b is given by:

K |
PR @
n
1

b

Proof':
Assume no signal x(k) present, only the noise disturbance x o The
cstimute for the parameter b under these ncise conditions is

K
B, = S W) x (1)
1

If this experiment is performed many times, the average b_ will be zero
‘provided the average xn(k) is zero, The mean square value of bn is

e K

: " —
2 ~
= W, W.(3) = (3
b E ' (k) x (k) Z pt ) = (3)
k=1 =1
The right hand side of th~ equation is deliberately written as the procduct
of two sums in different rariables to emphasize the order in which the

operations are performed. The trick is a common one and is useful in re-
writing the mean square value of bn as

X K
2 3
o= > W E W, (3) % (1) x_(3) (9)
k=1 i=1

The x_(k) may be moved into the j summation since it is a constant with
respeCt to j. The bracket is performed first, yielding a function of k
which is multiplied by Wp(k) and summed in k. The averagizg operation’
affects only the xn's because the Wb's are the same for overy sxperiment.
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The average product x (k) xn(j) is called the auto-correlation function

of x . This correlation function will be discussed in detail in later sections.

For this proof, it is only necessary to note that such an average product for

independent x 's is zero unless k = j. Providing that the statistics do

niot change during the experimont or between experiments, the mean square data
scatter will be the same for all points k. In other words,

cs-2 "constant independent
n _  of choice of k.

x ) = g =

The mean square error in estimating the paramster b in the presonce of indeper=
dent noise samples is thuc given by

—_— K
2 2 A 2
G =pv =9Q | [ W (k)] (8)
Any oquation of the form
K
b = Z W, (k) x(k) (10)
k=1

is linear in x(k). Conversely, all linear opcrations may be written in
2

b »

" linear operation in the presence of indepandent noise samples of mean square

the form of equation 10, The crror equation, O thus applies to any

2
value QO .
n

E. Solution of the Curve Fitting Problem by the Calculus of Variations

The classical solution to the curve fitting problem is an application
of the standard calculus. Attempts at extending the classical technique,
however, usually rosult in such cumbersome mathematics that the basic logic
is obscured. The calculus of variations technique does much to remedy the .
situation. An understanding of the curve-fitting solution to follow will
mean an easy understanding of the Wiener derivation and the various.related
constraint ﬁroblems (finite-order filters, matched filters, power level

constraints, and servomechanism optimization).
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The assumpfions in this variational solution are quite similar to the

classical assumptions. For variety, let us choose a slightly more general

form for the assumed x(k).

1. Assume x(k) to be of the form
x(k) = afy(k) + b £5(k) (11)
where estimates of a and b are desired,
‘2 Assume the disturbance to be statistical in nature with a mean
'aqu'are‘ value of G’i and an average of .zero., The statistics of the
diaturbance are assumed the same throughout the experiment,

3« Assume that the criterion for the best estimate is the minimization

of the mean square error of the estimated parameters. A subtle differ-

ence exists between this assumption and the equivalent classical one.

- The classical criterion minimizes the mean square difference between

the data and the estimate over the interval, The calculus of variations

criter?on used here minimizes the mean square difference between the
estimate and the correct answer over an enszimble., As will be seen,

these two criteria are equivalent only if the noise samples are inde-
pendent. In this problem, since the form of x(k) is linear in a and b,

the weighting function representation is valid -- i.e., the system is

1lnear -« and hence:

h

a¥x

Zwa(k) x(¥),

Z"b(k) (1) 4ata

The expressions for mean square parameter error for independent noise

(12)

b

samples are

S, =S ERe] S, =SR] e
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If the noise samples are not independent, the expressions are
more complicated, (See equations 8 and 9)
4. We desire that in the presence of no disturbance the W. will

yield a and the W , b, Thus
o =S () [ anm) + brn]

(14)
b o=>7m () [an) + br]
Inasmich as a and b are not necessarily related:
1l = W (k) £(k
g a( ) 1 ) } Wa constraints
0 = Wi(k) £ (k .
(K £,(%) (15)

0 =72.W (k) £(x)

W constraints
=200 (k) £,(k) b

-

These equatiens express mathematically the constraint that a noise-
free system yield the correct answers. 2
The problem to be solved is: 1. What is W (k) such that O , is

2
- minimized under the W, constraints? 2. What is W(k) such that G | ds

minimized under theW.b constraints?
-Solution for Wa 3
2 2 2
G, = G'nz (k)
1 = Z W, (x) £, (%)
0o = Z W_(k) £,(x)
Therefore,minimize

2

2

E = - + -

, = G+ A L1 - Zwmel + Ao -3 ] (o)
and solve for necessary A.'S. The minimirzation procedure: substitute
Wa(k) + &N (x) for Wa(k)’ differentiate with respect to £ at £ =0

and make the result zero independent of YL.
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2 , 2 2
AL £ W U D R S U N AT T R R
d € dt
- AzZ’(Wa +£’l’) fz
2
d E _ 2 1
p Ea. ‘°"26nz'"a'l -Alzflq - }‘22"2"1_
t=0
K
2
- E Vl[z (3; W (k) - llrl(k) - Azrz(k):]
1 .
(17)
Therefore . :
W) = [‘2_11 () [lz ]fzuc) (18)
2G 2(‘5n

The A's aro evaluated by substituting equation 18 into the W, constraints in
~equation 15, The form of W,(k) is again similar to the assumed form of x(k)
and is easily shown to be the same weighting function derivable by the classi-
‘cal technique, The solution for Wb(k) is exactly the same except for sub-
scripts.

It is not surprising that the calculus of variations technique yields
the same answer as the standard calculus technique under the same assumptions.
It should. The variational technique shows the approach to the non-indepen-

dent problem, however. Instead of the error expression
2

2 2
c)‘b = O Z[wb(k)} (8)

we mist use
K

X
P Z W, (k) 1 () 2,00 %,(3) (9)

k=1 J=
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Use of the‘gil oxpression in the optimization process will yield a Wy (k)
which produces the smallest mean square error. Inasmuch as the classical
éolfxtion yields an answer derivable from GE and not ;i ,it can not
result in the best;wﬁ(k)for non-independent noise samples. This fact may
also be drmonstrated using more elegant statistical arguments. It thus
becomes obligatory to use the calculus of variations tecchnique in solwving

the continuous x(t) problem where the independence assumption is not

realistic.

Problem 7: Yhat are the values of ;\, and }z'i'n tho derived oxpression
' for ‘Wa(k) in equation 187

Problem 8: WVhat average error and mean square error should be expected in
finding b where x(k) is assumed of the form x{k) = a + b k and
vhere the noise consists of independent samples of mean squarc
value‘Sn and average value zero?
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V. FOURIER AND LAPLACE TRANSFORMS

The two-sided Fourier transform is a useful tool in certain sections of
~ optimization theory. This transform is closely related to, and more restrio-

tive than, the more famillar one-sided Laplace transform* defined by

F(s) = J 0t) o as (19)
O+Jco+c

$(t) = 2_,,_13 j F(s) o as (20)
-jo+ o

where f(t) is the time function to be transformed, s is the so-called com-
plex frequency, and c is a real number {often zero) used to guarantee
integral convergence. Using the substitution s = j¥ in the conventional

definitions of the two-sided Fourier transform shows its similarity to the

Laplace transform,

+90
JEB) = j £{t) e-St at (21)
+jm
’ st
fe) = 1. JJ(S) e ds (22)
2T3
-jm

The absenoce of the convergence number, ¢ restricts the Fourier transform for

our purposes to functions which satisfy

*Gardner & Barnes, "Transients in Linear Systems."” The transform is called
one-sided because only the positive time region is considered. A two-sided
transform considers behavior in both positive and negative time.
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<«

ﬁ f(t))] ¢ < oo

0

- Q0

2
- Jlew)]  ar < oo (23)
0
. et t}

Thus funotions such as e and cosft have no Fourier transform. Pro-

viding the restrictions are met on f(t), however, tables of Fourier trans-
forms are easily created from tables of Laplace transforms. From the
defining integrals, if Fy(s) is thc one-sided Lapluce transform of f(t)
fromt = 0 to t = + 9 and if Fy(s) is the one-sidod Laplaco transform of

£(t) going fromt = 0 to t = - , then

= <+ -
F (s) Fl(S) F,(-s)
—T
£.(t) _ — £,(t)
. - - -_—
- e ] e _
—.ﬁ..,“.____‘\\
0 time
FIGURE 7
Time Functions
-« |t - |t}
Problem 2:' Find the two~sided Fourier transform of e and e cos At
Problem 10: Prove that g/(s) = Fl(s) + Fz(-s) as stated in the text.

The restriction on the Fourier transform provides an interesting and



useful mecans of detormining whether £(t) occurred in +t or -t. This infor-

maticn 3s highly important in discussing the realizability of networks. For

exanles given

sl 1
A(s) = — o> O
. «{ -8
it might appear that two alternatives are possible.
ot :
1. fl(t) O for t <0, e fort >0
-« 1t
2. f,(t) e for t < 0, Ofort >0

£, (%)

Time

Figure 8

-Alternative Time Functions

Only the second alternative setisfies the condition for existence of the

Fourier transform. For .Hhe Tirst alternative
<

r 2
J lete)]  at = e a4 = oo
+0 0
anc¢ hence the Fourier transform does not exist. We might peneralize this

concept to show that &transforms of the type
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< |
gm - ) A

' . 4 s
i=1 1

Real (r"xi) 20

describe time functions in ;ositiv- time only aud that g-trqns!‘nrms af the

tyje
< 1
5™
o = L e Rm @p>o

describe negative-tim- functions,
The two-sided Fourier tranafoimrs jossess anotber interesting jreopriy.

Providing that the Wisne--Faley criterion
4joo
{ Pd
1 { [ame et (s ! / ds <« (24)
27T) 1 2 - _
- s

-3

~q -

i3 satisfied, the Fourier transform is :aid to be fa-torable: +4the factorable

transform can b written as

A = Pis Hes) @5
where ‘7’1(5) and ¥/(-s) are exactly alixe exce;t, (1) that 7‘/(5) refers to-
a (csitive-time funetion and SV(-S) to a negative-tim~ function and, {2) that
‘)U (-3) cen be written by substituting {-s) everywhere for(+4s) in 1/)(5)-.-
As will b2 seen in later sectinns, the Jiener optimur solution Jej<enis u;on being
able to factor a Fourier transform into its t-o jarts as 32fined in equstion 25,
The factori::atio‘n theorem also has a practical s:unificance with r-spest to reslizasble
networks. Realizable networks have an impulsiv- response h(t) of zero for t< 0
and conseguently will have a transform H(s) in positive s only. Th- amplitude res,onse
of the network is |H(s)| ané its attepuation log{H(s)Iz. The criterion *th.s

. A}
states that no realizable netwnrk can have infinite attenuetion Lﬂ(so) - 0]
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over any finite frequency band.
- -i{tl
Example: Factor the l}{s) for f(t) = e
. — 1
Fl(s) AL +8
1

d-3

xJ(S) = j%(_;z

Fz('s)

vhich factors into

F(s) Naa Y 2
o

L J

e

~oL 1t
Problem 11: Factor the i (s) ror £(t) = e cos B %

Both the Laplace and the Fourier transforms arc mathematical aids to
simplifyy the solution of time-invariant systems, Such transforms af;f¥€ia-
tively worthless, however, in treating systems which vary with time.* A
complete treatment of the optimization of linear systems certainly should
include the time-variant tase. Rather than develor an all-inclusive body
of mathematics capable of solving both the variant and non-varient cases,

- however, we shall develop the non-variant solution only. There are good
reasons for this apprcach. The only real difference between the all-inclusive
theory and the time-variant theory is the level of mathematical labor. The
basic solutions for optirmm systems are identical in form. It is possible

to carry the invariant case through the design stage, however, while the

* Typical systems are those in which thz values of R's, L's, and C's vary
with time.
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variant case is blocked by a formidable integral equation which, in general,
is insoluble.

Inasmch as aerodynamicists and guidance engineers are often faced
with time-variant aystems, a repid development should occur of the necessary
mathematical aida-torredﬁce the labor of tims-variant system design. A
referesnce of value is *Transforms for Linear Time-Varying Systems® by John
A. Aseltine, a thesis submitted at U.C.L.A., Department of Engineering, in
February 1952. The thesis is primarily a diagussion of the use of other
types of transforms than Laplace and Fourier. Bessel and Cauchy trghsform
are discussed in detail; methods of reducing veriant systems to invariant
systems by substitution are mentioned.

Problem 12: To show how time-variant equations may occasionally be reduced

to invarient equations, reduce the following oquatign to a
constant coefficient equation by substituting u = e

auziz_g 4 budx 4+ ¢x = g(u)
du

In this equation x is the dependent variable; u is the inde-
pendent variable; a, b, and ¢ are constants; and g(u) is a
driving function,
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——— ——— # — et e s ol e A W

Elcctrical engineors hav: long been familiar with the use of transfer
functions for description of network performance. In & lincar invariant
system the transfer function rclates thc output of the network to its in-
put by moans of appropriate Fourier or Laplace transforms. If F(s) repro-
sonts-the transform of.the'input, H(s) reprcsents the transfer function,

‘and G(s) represcnts. the transform cf the output, then

6(s) = H(s) F(s)

input output (25)
F(s) G(s)

This samc relationship may be written in the time domain* using the super-

position intcgral.
t

glt) = jh(’l:') r(t-T )dT (26)

0

where g, h, and £ are the Laplace transforms of G, H, and F, respectively.
The relatinonships are similar using two-sided Fourier transforms:
Fs) = us) K(s)

+w (27)
gt) = nr) f(t -T) 4T

* Gardner and Barnes pages 228-236. Recommended readinge.
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+e0
Proof: _ -st
§b (s) = z(t) e dt
Bliay 4+
st
= o l h('c)f(t-t)dr.]dt
gy e
4+ e +<
. -ot
= h('c)[ f(t-T)e dtJ av
-y -
-h” +oy
-8T -s{t - )
= hT)e dat tf(t-T) e dt
-Qo - %o
+~& +
-8T -su
= h(c) e dv f{u) e du
I -

h(s)éﬂ?s)

The time domain representation is more fundamcntal than a represontation in
the complex frequency domain. Timc-variant linear systems, for cxample, are

described by making the function h time-variable.
+ a0

g(t) = h(T,t) f(t-T) dx (28)
| -0
The superposition integral is also useful as the clearest way of visualizing
the cross-correlation operation used in detection of signals of known form.
If the integral is re-written as a sum of discrete sampling operations, the
resulting equation is recognizable as a weighting function equation similar

to those given in the section on curve fitting,.
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27w
X
<
Z(K) = 5 h(k) f£(K - x)
X =1
K
b = E W (k) x(k) (equation 10, section IV C)
k =1

The physical significunce of the superposition integral may be visualized
is secveral wayse If the innut wave is plotted on a timc scale as it arrives,
then the nstwork weighting function, h(T ), can be imagined as bzing druggedfi
dovn the record at the same rate. The output is the integrated product of

the two nlots at cach instant.

,’J’\\, /l—-—-v—

ey s -
input f(t) e \'"’\\ r ,/’)\\a
TS ——RT) T
.= - - — -— !
time preLent
insrant
output g(t) LT
R B
~-”.-”"\."" -
3 |
time ]
FIGURE 9

Graphical Ficture of Superposition Intezration

From the superposition integral it is evident that h(t) is the rcsponse cf
‘the network to an impulse. Thus the superrosition integril might also be

visualized as the(presont) sum of responses to the(past)impulses defining £(t).
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responsc to un
impulse at ¢ E

A rfd

\L

/AW

' p#csent
mE instant

FIGURE 10

Graphical Picturc of Supoerposition Integration
These visualizations illustrate the fact that the network h(T ) detcrmines
the present relutive importance of the input signal T seconds before. In
this sense, h( 2 ) is a weightad memory,.

The frcedom with vhich we may choose h(T ) is limited in curtain

cases. 1In a physically-realizable system, it is impossible for ﬁhe system
to have a remory Tor events which have ncet yet happened. Thus, for

physicaliy-realizable networks:

h-g) = 0 whore "T is a [positive quantity

(28)

This restriction is not always arplicable. In data reduction work, all
data with respect to the iaterval of interest is aveilable, both pust
and future. ilei_ hting functions extending in both directions in time

are therefore adnissible.

Problem 13: Skotch the resronse of a system described by the cquutions
below to a step inout at t = O,

1/T

0

0 fr<€ 1T : n(z)

!

TYT : hivT)
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Problem 15:

— e . ———

f{gblem 16:

P 204

Skoteh the regonse to a tine variant system described by
the egvations below to a step input at t = 0.

: h(T,t) =—:1L,- sin t

T
o T : hlz,t)=0

Weo [CTTTTTAF
! 51n
| T E A
0 T

Sketch the weightingg functions for the following:

3. An integrator

be A pure time-dalay

Ce An imperfect integrutor H(s) = l/bi + s)

d. A differsntiator

e. in extrumely narrow-band filter band-centercd at fo'

Demonstrate why the integral equation below cannot be Laplace
transformed unless £{(t< 0) = O.
+

g(t) = () £t -7) ax
0

Sug csticea: Try it, usipg thz same stepc os given in the
4 -translorm proof of cquation 27. Keep close
trock of the limits.

Notws: This parcicular intezral cquation will appear
later in section XIT E with the conditions
(1) thet £{t<0) # O and (2) the equation
holds for t> 0 only. The solution of such an
integral egqu-tion is fairly tricky.
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VII CCRRELATION FUNCTIONS

The concept of indepcndent phenomena is easily described and wuderstoods
Two differeont random noisc generators arc undoubtedly indopendent. The
static in radio rcception is probably independent of the broadcast signal.

Related phenomena are also easily conceived, althouph the particular
viay in which relatedness is measured might scem arbitrary. The measure
of rclatedness is chosen to be the corrzlation function. Let f{t) be one
function of time and g(t) another fuiction of timce If those functions ore
comparad in experiment after oxperiment, alvays at a time t, after the

experiment sterts, we define the correlation function 'Pf*(to) to b the
L

result of averaging f(to) g(to) ovzr many experimentse
‘Pfg(to) = T(%,) &%) {29)

The bar significs the average over :mny experiments. I £(L) and p(t)
rencat themsclves identically in cach experiment, the averaging process
is unnccessary. On the other hand, if £(t) and g(t) urc statistical in
naturc from experiment to experiment, the averaging process is of prinu
importance.

The major rceoson for measuring relatedness by the corrclation faction
is that the corrclation funetion (or its Fourier trunsform) is the an-~ =nd
only necessary function in deriving the optimum systemn.

Instead of comparing f(t) and g(t) both at t,» wo might corpars r(t)

at t  +T with g(t) at t . The corrclation function then hoconcs

P.(t,,T) = TE;FTTEEY (30)

*The order of subscripts follows Wiener's convention. Phillips in M.I.T.
Lab. 25 uses reverse order, gf.
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This particular correlation function is called the cross-corrclation

function of £ on g + Another comparison we might make is a comparison

of f(to +7) with f(to). The result is the auto-correlation function of f.

Poplte®) = (e, + T £(t) (31)

The correlation beotween a function and its value T scconds away might well
be expected to play an important part in system design. Systems have been
mentioned as having weighted memorics. A signal auto-correlation function
décreasing slowly with € indicates a slowly varying signals Swuch signals
aro more easily extracted from noise than those with auto-correlafion
functions decreasing rapidly with t‘ime."l The correlation function measures
the degree of relatedness. The suto-corrclation function msusures the amount
that a signal hangs together in time and hence specifies how nruch of its past
history is worth rememberinge.

The behavior of most_statistical phenomena is such that the averaged
performance is the same regardless of the part%cular instant to chosen for
the observation. The behavior in time of such phenomena are called
stationary time series. Notice fhat it is the average performance that
is stationary. 1In stationary time series, the correlation functions do

not depend upon t,.

£t +T) git)

Pl T) (521

(st + T) £(t)

Pee(T)

* Noise is usually characterized by autc-correlation functions decreasing
rapidly with ¥+ The most difficult signals to extract from noise are
those in which the signal auto-correlation closely rescmbles the noise
auto-correlation.
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Stationary time series are endowed with another property by hypothesis.

The hypothesis states that it makes no differcnce whethor the aﬁeragc is
carried out at t, for many experiments, or whother the average is carried

out by using observations at differcnt times in & single experiment, Thé'
ergodic hypothesis cen not be proved, it can only be justified by cxperiuwptal
rosults;' Some justification for the hypothesis might be found, however, by
roasoning that because the time series is always present (we just aren't
watching it) and because the time of start of the experiment is arbitrary,

any observed value might well have occurred at the choscn to. Using the

orgodic hypothesis and the integral definition of time average:

+T
limit 1 £t +T ) z(t) at
Pty = . =
£z 4

(33)
In this development of optimization theory, the correlation function will
be used primarily as-a tool in derivations. Wicner has shown that the
Fouricr transform of the correlation function is the spectral density --
a somewhat easier starting point for the design enginecer's imajination.
The spectral density describes the power distribution of the function in
the frequency domaine. It is easier for the engineer to describe hum
interference by remarking on the amount of 60 cycle bower present than by
stating that the correlation functior cxhibits a marked periodicity every

1/60 th of a sscond.

Problem 17: Find the auto-corrclation function of £(t) = a sin( f t+ C)
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There are two problems in which the correlation function itself is
particularly useful. The first problem is the one josed by disturbances
correlated with the signals., The second is the problem of signal detection
by comparison of the incoming signal and noise with a locally gonarnted
signal. The 1atter~problom is encountered in cross-corrslation detection
asystems, . When such systems can bs used (detection of a sine wave in noise),
they ars capable of out performing conventional filter sys@ems. _The
correlation functions are also used in reﬁuping the labor réquifed in
empirical determination of apectral densitiés. For assistance in these

problems, som= of the properties of correlation functions are:

1. Y (0 _Z\P“(’b’)

e
2. ¥ ff(0) =-CY§ = mean square value of f(t)
3. ¥ . © =¥ ) (34)

b P 0 = ‘Fsr(-’b’)

5. P = d_a%_\pu(’c’) ( £ =ar/as)

Problem 18: Using the defining integral (equation 33), demonsirate the
five properties listed above. To demonstrate the first property
consider the function f(t) + f£($+ 4+Y) and its auto-
correlation function properties.
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VIIT SPoCThAL DESITY

Tho spectral density is the basic dosign tool in the optimization of
tirie-invariant linecar systems. The operations of deterrining the optinem
system arc rednced to aljgcbrzic manipulations by the use of the s»ectral
density. The developnment of the technique of optirizution‘nay 10311 hove
besun with Viiener's recognition that the spectral dermsity prevides a siwple
lirl betieon ctationary time scries, system transfer functions, und the =cun
square crror of the systeme Largely duc to the lack of s-ich o toel tor the non-
s

ati~ncry case, the desiyn of tine-variant systems is both diffTicenlt und

-~

curbarsome,

A, Dcfiriiion

The soacctral density, 'Ez(ul), 02 a function £(t) is & .fincd as *the
uv-ri e nower reguired at cach frequency* in order to describe (%) in a
poversd seonse.  ror cxample, if £(t) = a sin (bt + c), the spostrzl doosily
comsicsts of two delta functions of area az/h loczted at pd b/?Tl o the
froqueiicy aiiise The mojor use of suectr:il density, towsver, is not {he
description of Jmovm sit : waves but of stationary rundor: functionse Such
Fanctions rossess contiruous spectrzl densitics. The specirel density of o
roator. function may be meisured directly by scanning the wholc frearoncy

*25icm with a narrow band-pass filter. The bondwi-th is assuned sald

¥ Frequency is defined from minus infinity to nlus infinity both {or
mnthomotical convenicnce arnd becoawss tliis definition ' revents wony
mistakes in vrohlens involving moduluticn ond dchoction.
” n

*» I this development, "pewer” is o custoyrary word s:bhstitute for

s S

~
"wvalue sguarced" rather than a2 macsure of work copabilities.
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enough 8o that the power density does not change appreciably within the
bandwidth. Inasmuch as thes filtar scans + frequenciss at the same time,

the syecfral density at either a positive fraquency or its corrssponding
negative frequ-ncy is given by one-half the power output of the filter
divided by th? filter bandwidth., Figure 11 shows a typical Wiener a}nctral_

density and the action of a narrew band scanning filter.

59225 = power density
aps

/ﬂ'Tr'_-—.. -
/ l" ‘ .;:
<l B —-rh)o 1 li _ H 14 +0)o Dy
AN 0 . <
L~ 1 wrem (e

Superimposed;filter characteristic

, bandwidth B.

£(t) _{ Narrow-band scanning } Power %
I A - filter i ,“indicator ‘
centered at * Do i — i

Reading of -
Power indicator ¥ B r§ ((4.)0) +4 9 (- (4)0)]
| 5

FIGURE 11
Wiener Spectral Density and Action of Scanning Filter

s um

If the density is integrated over all frequencies, then by definition the

result is the (average) power of the function f(t).
+T

o
2 ) ) 2 - d )
G, = .}f"w’:gl“t)' at = j‘-"-(w) 2 (35)
>0 g
<er .
dJee
= 1 JE(S) ds

N
3
e

- oo
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B. Properties

.Perhaps Viiener's greatest contribution was the rigorous demonstration
that, for stationary time series, the Spectfal density and the correlation
function are J«transforms of each other. This single contribution changed
the spectral density from the level of empirical graphs to the level of ana-
lytical mathematics. Properties of Fourier transforms become properties of
the spectral density. Referring to the sections on Fourier transforms and

correlation functions we can write:

0
-5T
2 () =f‘{’ﬁ,(t3.e at
g 5% (36)
?ﬁ.(t) = 2_;3 -ﬁﬂ.(s) e ds

Another concept is almost immediately introduced which might otherwise be
missed intuitively: +the so-called cross~spectral dersity, a power density

present due to relatedness between two time functions,

© -sT
B () = f‘f’gn:) e dv
-
o st (37)
§gf(s) = [(ng('r) e 4t
-m

Based on the properties of the correlation function, we cen now vrite a few

properties of the spectral densitys
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- h? -
R e = R (e
+30°
2 %
= 0 = 1 {
2. O ‘P, T f.f_"m ds
“Joo
3. §rs(’) =§sf(-a)
+j00 .
b 4. @ (¥) = _21__ s 2 (s) e s (38)
aT fg 27T} g
-3oo
a® 4§00
. — (0 = 1 T ‘
2 av® kaS 27T § K = ffg(S)'d.

Problem 19: Demonstrate the above properties.

Using the notation FT(S) for the finite-time ;—transform of f£(t) and
GT(s) for the equivalent in g(t)

+T

| -
1 1
§ (s) = O'\,Td T.::p ST J () glt +70) dt:)
ef I
= lim _1 = F(-3) Gis) (39)
T>0° 2T
() - - ()|°
2 1 3 |l

These eguations must b

»

used with extreme caution. The cross-spectiral density

*By convention, the order of subscripts gf defines the F(-s)G(4s) trunsform
combination. The order, fg, would refer to F(4s)G(-s).
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equation is particularly treacherous. The finite-time transforms given here
must all be taken with respect to the same time reference, With proper cau-
tion, howsver, it is possible to derive the following properties of spectra

passed through systems,

&, r— 5t | 3 0

2 _(e) = IH(s)lzéi(s) (40)

1

£(t)

V_Hl(s) _‘—l

?__,» $ (s

™.

adding junction

&(t) g (s)

2 130 = 8,0 B+ |n@*d o

+ B ) BB ()4 8 (om0 (o)

(41)

Generally speaking, the amount of cross-correlation is small between dis-
$urbances er between disturbances and signals. If the various time functions
are independent of each other, the cross-spectral densities are identically
26ro. The converse is not necessarily true.

Problem 20: What is the output spactral density of a realizable network whose

function is exp(-olT ) to a stationary time series of auto-
correlation funciion exp(jﬁle/) e cosS JT?
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Probleom 21: Find the output spectrum of the system given below by first
combining the transfer functions. Compare with equation (41).

£(t) — H,(s)
1 %-——VQO(S)

f‘(t)-—-ﬁii (s)' '
Find thc cutput Spectrum of the system given below. Compare
with hoth cquation 41 and equation 40 (addition at innut).

£(t) ‘ ‘ .
gét) o1 H(s) $ (s)

Arnlying the iliencr-Paley criterion

“ .
L llog“‘i(S)”ds <. ©o
27 1 - §°

-3

(az)

" to & given spectral density determines its factorability, i.c., whether it

can l.c written as
EXOREIRY IO (e (43)

Wicnor has shovmn that when the criterion does not hold, the stationary iiac (
suvrics under consideration is completely predictable. Two such spectral (
densitics are ?g(s) = e , and ¢ sl

the Corm ﬁe-(t and A/(1 +t2) respectively.

s With corrclation frnctions of

liormal spectral dencities, however, may usually be represented as the

grotient of two polynomials in 32.
o

- - e_2_+_ 34_ +.. "um

d _ (s) = Bo T 15 a2 s - nymn

bo"bls +b25 - e tTeedS
2 4 2m (44)

T ) = B tad et g
or fr > o
bo+bl‘o +o'--o+o-o.qol£

vhere s = jW end vhere all cocffici-mis aure roul

and nositive.
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Such spectral density forms are factorable into

2 ()

'a(o + olls + ......+a[msm o - oy t oot ""msm ’

ﬁo + pls + ....‘..+.f‘nsn P° -Pls Foomeat.. Pnsn

W(s)  (-s)

45)

where Y(S) contains poles and‘ zeros in the lsft half-plane only, and \Q/(-.S)
contains their mirror images in the right hand plane,

The correlation functions corresponding to these spectral densities
are sums of exponential time functions with complex exponcnts. The fami-
liar relationships of Fourier transforms to each other hold as well be- '
tween a functicn's spectrel density and its correclation function. The
correlation behavior near T=0 describes spectral behavior as S-—+» w0 .
Transforms occur in "pairs,” i.e., except for the constat =W Jtyansform-

ing from the ¥ domain to the w donzin is the same as transforming frowm the

W domain to the (- T ) domain. For example:

1. Jv[e-u ltl'] = ___—23 2

~4

—_ -a‘ | 2a
_f [e wJ = 2T (a2 ""52)

2. J-[S(t)]
Iﬂlé(w)]

1
)

1/2

N
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C. Comparison with the Fourier "power spectrum"”

The definition of spectral density soundsrmuch likoe the definition of
"power" -present in a Fourier transform. The question is often asked, if
£(t) has the transform F(s) what is the relationship of 'F(sﬂlz to the
spectral density? The answor to the question as stated is: none. From

oequation 393

in 12 2]
PO P b 2

" F(s)lz lim [E%i]

T~

(46)

=0
Functions which possess Fouricr transforms cvidently possess ne specstral
density. Such functions also have zéro mean square valuc. To be trans-

formable f(t) obeys

-+ ag 2
(' f(t)l at <@ [ e
J AoV
- = A
thus
-}
2 : * 2 A
g° = lim _1 jlf(t)] dt = = 0
f T+w 2T ')

-7

As will be seen in the next section, the Fouricr power spcctrum can be used
to gencrate a spectral density by introducing randomesse The normal Fonrier
trensform, however, is evidently not the means by which the mcun squire value

of a function is determined.
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IX THE FLAT NOISE CCNCEST

Later sectiona will show that 1€ the spectral iensitiss of all input
functions ares known, th~ optimum system may b= SPccifled“by a few algebraic
manipulations. The 3lesign =ngineer's major problem is thus the specification
of input spectral densities. The sbatraction, *flat noise,® is often ussful
in this connection.

Flat ncise is define~d =2s a raudom time function whose spectrel density

is a constant.

[}

Y t) = N
l flat

The corrslation function of such a spectzal 3euzity as . (), a delta function
st = 0. A flat spsctrai density can bs produced by a time-sequence of

2
indep~nd~pt impulses*having zero averags volue, & mean square urea of N ®

and occurring at random time {atervais of mean length /,Th. For this model

of flat poise,
~ ~
! = ::‘ = ’ ‘l’ Y
s —"F

‘ flat N

Flat nois~ reguires infinite average power. As will be seen, howaver, the ab-
straction is often useful.

The first use of flat noise is in the siecification of thermal o vacuum
tube nois=. Such nois= bas a constant sp~2t-zl depsity by actual neasuren=nt
well past 100,000 megacycles, Fer ell practiral jurjoses, therefore, thermal
noise is flaf. It is tacitly essun2d that the density finally Jecreaszes 1o
zero in order that infinite power 15 no* reguired. For thermel nolse, the

spectral density of soltage is

- ———— * B Mn = e . - W e e S T Sy S S N R} Pt $ TAe? P " 3

*Theory of Servomechanisms, jagss 293-239
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P(w) = 2RKT
where R = resistance in ohms
-k = Boltzman's constant

T = abéolute temperature in degrees Kelvin
The second use is for mathematical convenience only. We usually know
the approximate signal bandwidths. The bandwidth of any circuit we might de-
sign certainly will not exceed the signal bandwidths by much more than an order
of magnitude. Thus if the noise is flat out to at least 10 signal bandwidths
its behavior outside such limits will not be importent in specifying the opti-
mum'cirpuit. For sxample, suppose that the signals have a bandwidth‘a)o

centered at zero frequency, and that the noise spectral density is given by

N2

I
]
]

(]

N

™ <~
L)

P a s ~ - =
Cwiall lhaulpuliavious. uvcuersally

speaking, the resulting optimum system will not be affected noticably by ig-

2
noring the [;J/loahg ‘term:. For this reason, flat noise is cften used as a

first approximation in the description of wides-bandwidth disturbances,

The third use of flat noise is often the most helpful. We noticed that
'lFourier transforms of time functions were unsatisfactery in describing spesctral
densities or mean square values, The behavior of systems to spectral densi-
ties.>howev§r. suggests an interesting way of generating spectral densities
for signals (and disturbances) whose approximate time characteristics are

known. Assume a fair knowledge of £(t) and hence F(s). From transfer function
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theory we.lunow that f£{t) can be produced by inserting a unit impulse into a

oircuit of transfer function F(s),

unit impulse —md F(5) b—a £(t)

Let us substitute flat noise for tﬁe impulsoe. The output spectral density
2 .2
is IF(B)] N

2
Flat noisezﬂ =p% —~ Ps) b—— 3T = ‘F(s)\ W

output

The output time function of this system consists of many f(t)'s of random
amplitude and time of occurrence, The multiple f(t)*s will overlap, add, and
cancel, For example, if f(t) had been assumed a step function, the noise-

: . s *
driven circuit would produce

— 1] ’_L_i t—Lj e

i :

T

or if f£(t) = t, the circuit would produce

A~ A
N A4

* Using the random impulse model for flat noise and assuming that the
length of the experiment in time is not infinite. Given infinite time,
it can be shown that both functions above viill drift to oither + or - ma.
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The Laplace transforms of a step function and a ramp function are 1/s
_and 1/%2, respectively, The equivalent circuits F(s) for the illustrative
f(t) aré therefore an integrator and a double integrator. The sketches
aboye thus represent integrated and doubly-integrated flat noise, Other
functions of time result in appropriate oircuits. Occasionally circuits
are required with &nfinite power capabilities, Bocaouse of the demonstrable
properties of integrated flat noise to drift to plus or minus infinity,
both the integrator and double integrator fall into this class, The issue
may be side-stepped by stating i*hat there is no such thing as a perfect
integrator and that all integrators should be represented by 1/s+a where
a is some very small number, If in doubt about the mathematical validity
of certain operations involving such circuits, deliberately dégrade the
circuit during the optimization process, removing the degradation at the
end of the process if possible,

Several important points arise in this last use of flat noise. The
first point deals with the s- and t-symmetry of the final spectral densitye.
’Inasmuch as the spectral density is N F(s)F(-s), the generating time
function may have been either f(t) or f(-t). If f£(t) were e-at, for

example, the spectral density describes not only a random series of o8t

but e-a'.t'as well, In addition, flat noise consists of other time
functions than a random set of impulses, as may reaﬁily ascertained by
viewing wide-band noise on an oscilloscope. The preceeding sketches, there-
fore, desoribe possible outputs onlye.

The design engineer ocompletes the generation of speétral densities from
approximately knowvn f(t)'s by specifying the expected mean square value of

: 2
the r(t) and its repetition period. If the mean square value is Cr}
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and the mean repetition ratel},Tf, then the spectral density for a random
series of f(t)'s is given by
- 2 >
B (W) =0 ATf‘F(s)’z

Problem 22: A rocket is fired vertically into the atmosphere. Wind is an
important disturbance. Assuming that the atmosphere is charac-
terized by layers of random, constant-velocity winds and that
the rocket encounters new layers st a roughly constant rate,
derive a spectral density for the wind velocity. Assuming that
the rocket has a transfer funetion l/Ts2 from wind velocity to
missile position, what is the spectral density of rocket position?

Problem 23: Derive the spectral density of the vertical acceleraticn produced
by bumps in a road. The bump height y is given approximately by
ax2e-bPX where x is horizontal distance, Assume constunt velocity
travel down the bumpy road.

Specification of the spectral density of disturbances should be made at
the origin of the disturbance. Sp2cification of the tracking noise of a radar,
for eiample. is most accurately obtained by locating the sourcss of the noise
within the tracking loop, specifying the noise spectral densities at the
Source, and then using the known transfer characteristics of the tracking
loop to syecify tracking ncise. It is surprising how often a flat noise
assumption for the source noise will yield a spectral density which checks

empirically at the point of interest in a system. Tracing the source of the

noise will occasionally demonstrate certain cross-syectral densities as well.
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X THE ERROR SPECTRAL DENSITY

Now we begin to hit pay dirt, The desired operation of the system is
kmown. The input spectral densities are known, By writing an expression for
the system error {actual performance minus desired performance) converting

this expression into.ifs spectral density form a;rror (8), we may specify the

mean.ééuare error of the system.

joe
.a’s’fl'stem = L g §£ (s) as (47)
-Joo

217 3

Given such an integral expression for mean square error, we may minimize it
by any technique applicable.

Consider the basic system given in figure 3.

Signal f£(t)

> H(s) 3 Output = z(t)
Noise n(t)

Describing the output by & Laplace transform equation:

Z (s) = H(s) F(s) + 1(s) N(s)
Assume that the desired operation is to obtain the best f(t) possible.*

The error of the system is thus
€(s) = £ (s) - F(s)
= EH(S) - 1] F(s) + H(s) N(s) (48)

The squared error is given by

* The so-called smoothing operation,
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2 2
|B(s) ~ 1] ®(s) F(-s)  +[E(s)| N(s) N(-a)
+ [8s) - 1Jut-0) F(a) W(-8) + [u(=s) - Yn(a)r(-s}n(e)
(49)

€ (8) € (-s)

The Fourier Transfoerms F(s) and N(s) do not actually oxist for stationary time
serieses The error-squared expression of equation 49 is used only as a shortout
method of finding the appropriate spectral densities.. Equation 49 could be
justified by considering F(s) and N(s) as finite-time transforms. The spectral
density form of equation 49 may therefore be written by taking the necessary time

averages (see equation 39).
. 2 2 i —_
B (o) = [5=) - 2] Bpple) + |EL E () + [n(s) - 0 me-a)F (o)

+ [aC-#) - 3] 5YE () (49a)

If the signal and noise are uncorrelated, both §nf and {m ‘are zero. It is not
legitimate to find crbss-spectral densities by factoring the signal and noise
spectral densities into functions of +s and -s which are then combined into
apparent cross-spectral densit!es. Cross-spectral densities mst be justified

independently of the form of ﬁhe auto-spectral densities,

Problem 24: Assume a system in which the signal £{t} und noise n(t) arrive at
the output by two different routes such thet Hl(s) acts on f(t) and
Ho(s) on n(t). The desired system operation is Hz(s) ecting on f(%).
Assuming correlation between signal and noise, what is the erroi
spectral density?
Problem 25: Vhat is the error spectral density of a smiothing system H(s) = - S
- © a signal of spectral density (bz - 32)’ and a flat noise a+ts
spectral dendity? Express the answer as the quotient of two poly-
nomials,
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XI PHILLIPS' OPTIMIZATION TECHNIQUE =

If a complete system is at our disposal it is worthwhile to design the
optimum possible system. Often, however, the system is completely specified
by oéher considerations and only a few parameters are available which can be
varied to yield best results. For example, the optimum system may require
isolation amplifiers in order to realize the optimum trensfer function. Addition
of such amplifiers may 8o increase the cost that in a competitive market the
result is economic loss.

In the previous sections we have shown how to specify the error spectral
density for a system and have remarked that spectral densities usually occur:
as quotients of polynomials. Phillips noted this fact and set about evalua-

-ting the integral below in terms of the coefficients a and b.

J oo
2 _ 1 .
=y ) B
« h (s)hy(-s)
~Jow
where n-1
ha(s) = 858" + 88"~ + <eeee ay 1)
_ 2n=2 2n-4
gn(S) - bos + bls + ~o.ooocbn_1

The roots of hh(s) must all lie in the left half plane. The factorization
of the denominator puts the integral into its most useful form. The nuﬁe-
rator is not factored because such factorization, while certainly possible,
would entail additional work for the user. The subscript n gives the order

of complexity of the polymomials. s an illustratiqn let

* From "Theory of Servomechanisms" Vol. 25, MIT Radiation Laboratory Series
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: T S B Evodoelt |
€ a-s  fEIS
- ~(A+B)s? + (A/g.2 +33.2)
[+ (X +P)s + o\/Q][sz - (t+B)s + A/gj
Joo
2
(48 = 1 EE ds = A B
€ rd € 2o Tap
~J 0O
Using Phiilips? integral expression,
n(s)=s"+(@=@)s+af = nfls)
Eas) =-(a+3) s* + (a2 + pat?) = gy(2)
and thus
n=2 b, = ~(4 + B)
gp = 1 - 2 2
a) = OK-+/9 he! qu +Ba
82 =& g

Phillips has evaluated such integrals for values of n form 1 to 7. (Theory of

Servomechanisms page 369). The first four integrals are
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2 b
0L = _°_
2354
abbl
gl het TR
52
e (s2)
2 8,810y
0:6 = -azbo + aohl - 33
2a_ (aoa3 - alaz)
2 a,b3
O, = Polaray + agag) = aagdy + 221% * 57 (acng - ay8p)

2
2a, (80a32 tay a, -a a a3)

2 2 2
The expression for Oy contains 21 terms. 0z contains 47 terms and CT% , 1.

Problcm 26: Vhat is the mean square orror given that

- 10
gi B 2 5 volts®
t l-38 T =2 ‘o8 /eps

The optimization problem in Phillips technique is the probtlem of minimizing

2
the (Yg with whatever variable parameters are available. For example, let

_ A
$ - W i

-8
where ol is variable then
2 A B

o = A, 22

2l 2
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for a minimum

do’ = o
A

A =Ll

Problem 27: What is the best RC time constant in the network below to mini-

mize the mean square error when smoothing a signal
in the presence of (independent)noise

and consequently

2
T ’531&5"-

_ 2«
N o*— st
o— AV —
INPUT R ¢ —= OUTPUT
o -0

This optimization technique followed Wiener's technique by roughly a

yoar, even though, mathcmatically, this technique is far more limited in
SCOpe.

ek T S
boo | 1 RS et T
\,_:;5("?5))(0(1'3\(0(~S) 1475(/~TS)'/j N

£l
I+7T5

1

. A% e 267
U+ To (o5 ( ) (1 +CSX/345)
=+ [ Tot+ ’) S+ TS
n=- 2- Oo:f )Q/:/r <ol JQI_:Q(V
bo= 0 y &’/ = <
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XII WIENER OPTIMUM FILTERS

A. Besic Logic

The Phillips technique minimizes the moan square error of a system in
which' a limited number of parameters are adjustables Tho Wiener optimum is
achieved via the calculus of variations route. However, the derivation of
the optimum, as Wiener presents it in his "Stationary Time Series," is so
mathematical in language as to obscure the simplicity of logic on which it
is based. Indeed, the logic has already been presented. Except for a trick
necessary to make the system realizable, and by considering an integral without
absolute value brackets, we optimized the simple smoothing system in problem

1 a., Combining our knowledge of error spectral densities with that of the

calculus of variations we may "almost" find Wiener's answer in three lines.

: (s)
Signal §ff N Output
Noise & __(5) H(s) —————> Outpu

Smoothing
Network

-(Signal and Noise Independent)

FIGURE 12
The Basic Wiener Smoothing Problem

Joo

J <o
2
0 = 1 § ds = 1 [
€ "y R §NN,H(S)’Z * §rrh'H(")IZst
-J o@ ~-Joo
3 o0 (53)
"almost" 2 2
= l -
> 2773 [§1m 5 §i‘f (-7 ] o
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which is minimized* by the calculus of variations technique, yielding:
R(s) = §fr(“) (54)
8 —

Problem 28: Show that if the desired operation has been H,(s) instead of
smoothing, the above H(s) would have been

H(S) = H]_(s) ?ff(s) (55)
IO EE IR0
and that J oe

5. = 2._}.11__3 5 o By 4. (56)
P §ff +§1m

The H(s) which we have just determined is interesting but cannot be rea-

lized. As was shown in the section on spectral densities:

)= 2 (0
B(3) = B gl-e)

and consequsntly H(s) = H(-s). The transfer function thus has terms such as

F-0 ZFE X
the second of which is either unstable (¢ &‘t) or unrcalizable e (-t)
as was discussed in the section on Fourier transforms.

Inasmuch as this obstacle takes orly a little trickery to overcome, we
have solved for the famous Wiener optimum filter as far as-basic concepts.
are ooncernede.

B. Trickery
The purpose of the following trickery is to make the variation of 0’;

zero with an H(s) which is realizable. The trickery enables us to discard

*Problem la,
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[<;]
(44}

part of the integral resulting from the calculus of variations differentiation.
Setting the remainder of the infegral equal to zero yieldé the optimum realiz-

able filter,

.The essence of the maneuver is contained in the values of two integrals.%

J® Jco
1. = 1 ds = 1 ds =0
172373 (& +s)( g +8) 2773 [CIEDIY-E0)
~J oo -J oo
Joo Joo
I,=_1 ds = 1 ds =_1
2973 (el -s)(/g+ s8] 2913 (a+ S)(/8‘57 &"',8
SJeo Yoo

(57)

The constants &, andlﬁ are complex numbers whose real part is positive.

Let us define two useful forms by a pl\is and minus subscript such that
2 s
Z, (s) = — 3, %
207 oo -2

The Z+ (8) is defined as having poles in the left-half plane only. Z (s)

(56)

has its poles in the right-half plane only. Then if Y_’_(sA) and Y_(s) is
another such pair of functions, the integrals Il and I, demonstrate that by

pairing terms in 2 and Y,

* These values may be obtained most easily by contour integration. If such
a technique is unfamiliar to the reader, the values may be accepted on faith.
It is probably unprofitable to study the technique just for this development.
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Joo J oo
o= 1 Y, ds= 1 Z_Y ds=0
+ - i
ZEN EAE S
4 / (59)
-J Q0 -J 0o
Joo Joo
I, = _1 Y ds= 1 ds = Constant
2 Y ds onstan
Ty |25 Ty | 2
Joe -Joo

Equation 59 shows that integrals whose integrands have poles in one half-
plane only have value zero. Those with'.mixed'poles have a non-zero value.

We now proceed ito tamper with the minimization carried out earlier.*

Noting that
LOEE Y
I - me)]® = (1 - H)(1 - B.) (60)

we rewrite

Jjoo
2
0 :2_13:_-_5 j [§NNIH(3))2+ iff’l-ﬂ(s)!zj ds

~Joo (61)

Joo
) 27;'3 (£§NN BAY é::'f @ -8)Q - B‘*)] ds

-.w
T * . - . + Q . .
o mninﬁge this integral we replace H, by H, 8 + The arbitrary
ﬁznotionft.,, is subject to the same restriction as H;, namely that it be

realizable -~ all its poles in the left-ralf plane. Performing the sub-

stitution and setting O 0"2/3 £ =0 at 8 =0 yields

*Problem 1 a
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- 6% -
2 goo -
20 ., [y [ 5.8
gzl = & ) - s
9 k=0 23 Mo LB (R Ey ff]
~J oo
Jeo
+ 271'5 jq- [K* (iﬁ. * §m:) B éff] ds
e
' (62
We can obtain a zero value, of course, by
B =H '= § e (63)

& rr TR NN

but this solution is unsatisfactory. The trick consists of demonstrating

that part of the right hand side of the integral equation is zero, regardless

of YLor the spectral densities., .let us facto:{@m + aff]

Tyt B, = WY e

The section on Fourier transforms gives us justification for this actionm,.

Then
. J
2 - v - 2]
=0 Lo Y (65)
J oo §.
7’;—1:3 jQ‘ Y- [H+ Y. - \fo] as
'JW

The first parts of these integrals, involving the integrals 7_'_% H_ ‘,E ds
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and fz q{ }1+ \H; “*,can not be zero because thoy contain integrands with
mixed poles {equation 59)., The second parts of the integrals, however, ocon-

i d non- ts. = d @ inmto
tain both zero and non-zero parts. To show this, split T’j: an "V-

sums. of partial fractions
+ § oy

§ff Z +z Bj_ = é £f
J 13 Y- ). Y- -

gﬁf.= Z__A}__ +Z__B_3__. = §f!‘ + éff
b ot Pyt

%L \% )

The zero parts of the integrals of equation 65 are thus

N

0 = das
Y+ /,
~Jwo
¢ (67)
DO
0= 1 rl L*)_ éff ds
23 ) - 78
~J o0 -

because the integrands contain poles in one half-plane only. Rewriting oquatien

65 without its zero parts we obtain

%—% - f*h‘ﬂ[ Y. - (%f Ja

- (65a)

-J oo
Joo

* lj Q—%[H“%' e ]d‘

Y. /<4

-
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The conditions for zero variation, independent of rL,are therefore

H LP = Eff e H = §ff
+ + W- +J -Y—- ____qj:-_-

By convention,

(68)

These equations are exactly alike except for a *s interchange.

( ' P ) is called the physically-recalizable part of 51.1./ ‘{). and is usually

viritten as

$ ) - [® £f = Z A
\*’ + q}(") physically OS'+ s
- A realizable

The optimum Viener filter is therefore given by

H(s) =
8 HV(S) QF'_—( o phy?cagy (69)

Prove that if the desired operation had been Hj(s) instead of
smoothing, the optimum system would be

ms) = 1 [ He) & g
qJ(B) \4/ (-8) physically

realizable

Problem 29:

(70)

The derivation has applied to a signal and noise which are uncorrelated.

In this case of correlated signal and noise the answer is

1 Ifl(s)[ﬁff + EAQJ (71)

H(s) =
® W(s) WV (-s) / physically

realizable

vhere
Vorpes =& +& + 2+ &

H.(s) = desired minimum phase operation
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Problem 30: VWhat are the optimum filters in the cases listed below?
Signal and noise are uncorrelated.

For Pon Hy (8)

s B

;o(-s 32 N
2 A

QA - a2 N? 1/s
2 2 A2

A ~ 5 /ﬁ -8 1
2 & 2 /8 1
A 8 ,9 -8 ST

C. How to Specify a Wiener Optimum System

The foregoing proof has demonstrated that the optimum Wiener system is

given by )
H(s)= _1 m(s) (§ff * im)
\P (-s) Physically
Realizable
- = + +
where Y(s) ¥ (-s) §ff+§nn §fn én:[‘
Hl(s) = Desired System Operation (72)
and where, if the brackets are expressible
(73)
ao + al s + 00O SO 8K+IP1

.R. (o + S)(dl + S)H-o(dx + S)(/Bo -s)(ﬁl-s)...(ﬁL-s)P

eile

then

- 2 &
( Physically ofi +s (74)

Realizable 1
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where the 4; arc¢ detormined by cay ouo of & number of techniques. (Gardner &

Barnes puge 164)e

D. A Few Cauticns in thc Uso of the illoner Optimum

— -

1. Porfect pridiction (past and Suturs)
The perfoct predictor is iven by

o8T =1 4+ gT + 27% + L.ee. 57T

2! n

/. N\ 1
2n + 8T
av,{_*
\Zn - sT
If T is & positive number (futurs prediction), the use of el = Hy(s)

) ©%e

(75)

in the Wierer optimum H(s) equaticn will contribute little other

than effecceting the cocfficients in the sum

A\
() (R + @0\ Z N
' = i

¥ (-s) /2., i ALt e

T . .
because no pcles of ®© appear in the left half-plene, If T is a
negative number, however,

1

o-slT' =
1+ izl + 2T
2 3

e (76)

2n - s"i“ n
2n + s|T)

and it bocomes nsiossary to include mere cerms in the operation

"physically realizeble." Depending upon the approximetion used for
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Q‘SIT' we will zet diffcrent contributions., For oxample, if the
approximation n = 2 is usud,from equation 76,

sitld L&

° e ¥~ 1n Atr 4 BL B,

¥ (-s) P.R.= - &1 T & (s+s)r))? -4+s‘|’1’l (77)

The approximation might also have been used
1

1+]1] s + [7]2 52

resulting in stiil different poies. The best approximation probably

Hy(s) =

depends upon the sigrnal and noise functions considerede
Misleading Opcrations

The oporetion, "physivally realizable,” has been defined only for
quotients of poiynomials whose numerator is of lesser order than the de-

nominator., Operations Hl(s) which result in
ma) (R, +8 )
Y (-s)

not having a higher order cernominator than numerator generally produce

misleading results. One cinpie check before starting the problem will

prevent such occurrenzes. Check that if no noise were present, we

would not be performing an operation yielding infinite output signal

values., As an example, asking the differentiation of
1

L= 12

would result in an output spccirum

§ T,

out 1 - s

whose mean sguare value is irnfinite. Stated mathematically, the

function (%) reprcsented by such a Q;iof is almost never differentiable.
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Problem 31: a. Find the operator which eppears whon

Hi(s) = s @nn = i

t. Let N —>»0. Aro we differentiating?

E. THE WIZNZIR CCLUTION Ii TilE TILE DOMATN

—— s o ——— o

The followin, timc--2-rn2in sclution is uvnnoeossary in discussing time-

invasiant systomse Iv 1. presestod here only to demonstrate the approach to
fe
ime-vari ystois, & time-variant s tionu s n like th rec

time-variant systess The t ant solution is mach likc the spectral
density soiuliuvnm in havins o zimpic logic but requirinz some mathematical
trickeryes we will omiv ithe trickery, referring the reader to Viiener, pages
§4-86, for the stationaryr casces Lo equivalent trickery exists for the time-
variant -ase; a _cnc:al colvtion gpuarcontly is iwpossible,

Lot vs solve the smocthing prcblem whore the desired result is £(t) and

the inpmt is £{1) = (1), corrciatods The outpnut of the linear filter h(T.%

18 o
, r’. ~ys p ;
e (t) = }'\(T;,-‘_)’f\'.— L)"?‘."l\".-"'rbl)] dft'/ (78)
out L .
©

The wei/ hting facvion h(l .t) is u 3:ig™tiy more zoreralized function than
usually seen in cuch intepraise The dopeniderce on time of the weighting

function 18 most easily picivre’ Ty imagining the we: sh

o o +.0

Ling function as

changing with Limc as i+ 13 dragged altong ths time axis,.
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..

L

A, S A PAVAWAYAYAYS)
S U
ty %

TILE

TIGURE 13

A Tinec-varians Weightirg Function

The error of the systom at tine t is jiven by

€(8) = o () - £(5)

W) [26-T ) +nle- T 0T - £() (19)

©
no now ~ust uelz en importont cdecision. Wo tmigt efwn. Lol 1z ozt

- e .~ - et

in the term ween sguzre error. The 228127 - :n ~71i2" hes tosq 87" L~ this

point (and which we will arbitrarily continuc to use) is thra

ct

the mean ie

taken with respect to an ensemble of experiments. The meun squur: error

mizht elso have been defincd as a iimm averzge during one experiment. The
latter definition was i1'sed in the curve fitting problom. If the systems are

stationary the ergodic hy.othiesis statye that the cdefinitions are eqguivalont,

AN e : o - - . IR S LR 2 : “
T:o Eh e ooshor dg U cevovio 5 Ahe O nfinitliors are voU eypvival .

D

To illustrate the difference b:tween the dafipitiocins, let us Tina the

mean square value of the non-stationary time serics e O(\t\n(t) where nft)

2
is a stationary random function of meun zero and mean square value 0/1,' o
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Definition One
(Ensemble of

Experiments) O"z(t) = - el ) n (t) |
= 24k} (80)
g,
Definition Two T
(Timo Average) o (t) 2ot lel
t) = lim 1 - n
v Tros TT™ (t)de.
Z7
= 0

Using the ensenble definition leads to the assumption that the mean square
error of a system is minimized if it is ensemble-minimized at every instant.

Coming back to the derivation, the mean square (ensemble) average of

E(t) 1is
_—-2___ B / oo
g (t) = \{jh('t’l,t) £(t- “c’l)+n(t-'t’l)] aT, - f(t)} (81)

- _
X Jh(’t’z,t) r(t-'E'z)+n(t-‘t’2)] aT, - f(t)}

which may be written as

gz(t) = fz(t)' - 2f(t)fh("t »t) [f(t—'t)m(t-'t)] aT (82)

+ hn:-,t) fh(tz.t) 2Ty (=) | - T )] e } aT,

¢

Defining some ensemble correlation functions

£(t) £(t+70)

]

£, T
(pff( ) (83)

i

P (6.T) = (& T) a(t)
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we rcwrite the msan square error as

——— o0
E2(1;) = £2(t) -th(’tf,:)’ ['\Pﬁ(t,-’b’) +‘fnr(t,-"d)] aT

-4
+ [ wEakey {ma [P 600, (54)

+ Sam(t,'ﬁ 1-1{2)
+ ‘P nf(t;ﬁdl’ﬁz) '
+ \Pm(t,’tf l-'Uz)J {v,

The mean square error is now minimized by the calculus of variations approach.
Let h(T/,t) be roplaced by R(T ,t) + &VL('L’ ,t), differentiate with respect

to € at £= 0, and make the result independent of q (T ,t)s The result is the

equation
o

Pre(t®) + B ®) = | [Por*Fon* P * Po] AR

|
p-3 Argument = t,’v +’Ul (85)

which hoids {only) for U> 0., Tis squation must now be solved for h(t,’U‘)..
No solution has becn proposed for the time-veriant case. For the stationary

casc where the operation Hy(s) is desired, it is possible to show that

o° jo<
H(s) = i e Star s § @
T I Pis) fﬁl( K Zer 2™ am) o5  (86)
~im W (es)

which is the samc as
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ms) = 1 BN g +B ) (87)

(-8)
V) Physically Realizable

dcfivcd-earlier. From our cnsemble definition of mean squarec error, Bi(s)
may be a time-variant opcrator if desired. A time-variant operator, H(s,t),

will appear much like the usual constant~coefficient H(s) but will have t as

a parameteres

Problem 32: Prove equation 85 in the manner outlined in the text.
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XIIT A PHYSTCAL INTERPRETATION OF THE WIrNER OPTIMUM

Bode and Shannon* have given an instructive picture of the significance
of the operations used in obtaining Wiener's optimum system; Their deri-
vation is basically the same as thc (e presented here. Theirr approach and
ilanguage are both slightly differcnt. Unfortunately, they neglected to
write the H(s) equation in conclusion.

The enginfor recognizes the necessity of making his systom physieally

1calizable, He alsc agrees that

<]

ff (Example only)

iff +§ m

n

H(s)

is a fine solution but unrealizablce But why can?t we write the solution

as follows?

(Example Only)

d Physically Realizable

The reason, mathematically. is that the optimization derivation docs not
work this way. The physiczl reason is this: the total imput function
(signcl plus noisc) possesses corrclstion., i.c., some of the data in the
future is predictabtie and henee we should usc a weighting fml:»t‘ion wnilh
understands this facte. The future information wiil not be totally sur-
prisinge 'i'hus, even though our weighting function can only usc available

data, it can do a tetter smoothing job by doing some predicting, as well,

* April 1950 IRE page 4i7
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On the othor hand, suppose the total input spectral density is flat
(correlation only at U= 0)e The futur=s is a complete surprise. Under
these oonditions let us derive a system with no holds barred. The result
will be unrealizabie as alwsys, But the unroelizable part, the part using
future data, is vorking with _c_gx_z}pletelx unprodictable information (ocorre-
lation of future input data with past input data is zero). The becst guess
at future behavior of the input is that it will be zero., Because the future
is unavailable, we will lose little on tho average by assigning it a zero
value, The "physically rcalizable” operation thus costs us the least if
performed on the 4ransfer function of a notwork whose total input spectral
density is fiat, Let us apply this reasoning to the Wiener problem.

1. Convert the given input to flat noise. The operator is 1/\”'(8)0

2., Optimize the system from this point with the desired operation

being W (s)e

. / Y 4
Bre+ &
B+ Fon 1/¥ (s) dff =— 8 (s) Oubput
Unit Operation
L/{Tota{ Hy(s) '1—"?(5)
Spectral Density

FIGURE 14
Physical System for Finding Wiener Optimum System

The optimum H'(s), no holds barred, is

(88)
B(s) = i) B,

e et et e et

H'er Qrfm
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as gshown c:riiere DBut this may be written as

' (s) = W(S)-sﬁfr/ql(s)\*)(-s)

= &
(§ . +@ nu)/“f’(a) 17 (-s) ’CF%E‘;) (89)

3. Taking the physically realizuliles part and combining into one

transfer function

H{s) = - gé‘ff(:l_ (20)
_ Y (s) *?7(-3) Physically

Roalizable
Problem 33: Derive the optimum H(s) to perform an operation 'ﬁl(s) using
the same rcasoninge.

Saveral consequencss of the Wicner solution are evident. First, and
probably most important, the best way of performing an operation Hl(s) is
g_cib. o first smooth the i.nput'&nd then operate with Hl(s). It is not true,
for oxample, that the best derivative of a function is obtained by finding
‘the best smoothed value and then differentiating it. The sccond consequernce
is mcre mathematical than prectical. The roguired corrclations are not the
signal and noise cecrrolotions baw the total correlation function of the
input and the cerrelation of the sizral cn the total imput.

_ . ,-1‘) -~ . (:’
tPInpu‘t;, - \pff+ *nn-’- an+ ' nf

Input

LP Signal, = kPf‘f * Lpf‘n

Input
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—3 and§

&
Problem 34; Given “-&2 2

. show that the true optimum system differs from §
.42, | 2.2,

in its numerator prediction time constant.
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XIV EXTENSIONS OF WIENER'S SOLUTION

The basto theory of the optimization technique 48 now complete., The
remainder §f this text oonsists of various applications of the Wiener so-
lution to special problems. It is the purpose of this section to describe
the various problems, The reader may then select the topics of partioular
‘interest in his ovmn problem, A servomechanisﬁs engineer, for example,
would probably select the secti’ ozs on quasi-distortionless networks, the
saturation constraint, transient error minimization, and the design of
servomechanisms, A radar engineef would probably select sections on
finite-time filters and matched filters.

The Wiener solution provided the necessary mathematical tools for
extensions of his work and for a unification of other earlier efforts.

The extensions are all illustrations of thq fact that if the calculus of
variations works, it aleso works under constraints.
Section XV

Hortﬂ,'Dwork, and Middleton independently derived the filters kmown
variously as matched filters, comb filters, North filters, and Dwork
filters. These men were interested maximizing the probability of detection
of a pulse. Their solution was equivalent to minimizing the mean square
noise output under the constraint that the filter duplicate the maX1imin
value of the pulse., We will derive their results in a few lines with the
benefit of a more powerful technique than was available to them.

Ragazzini and Zadeh re-derived the Dwork-North-lliddleton results for
a more general noise spectrum than flat noise and under the constraint that
the network be realizable, Our derivation is a spectral density version of

their time-domain solution,
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Section XVI

Ragazzini and Zadeh also tried applying the constraint that polynomiale
in time pass throggh the network without distortion. This oconstraint is of
necessity limited to finite-time filters. A filter which can remember the
start of a polynomial imst, by definition, ocontain the starting transient.
Ragazzini and Zadeh require th;t the ensemble mean square error be mini-

mi zed ovgg’the'interval considered. This extension of Wiener's solution

is straightforward but difficult of application. The dosign enginber usu-
ally has to solve fivec or six simultancous equations to obtain the solution.
Section XVII

The Ragazzini and Zadeh, finite-time filter is usually approximated by
the so-called quasi-distortionless network. This network passes polynosnials
without distortion except for the starting transient. The quasi-distorti.on-
less network can be optimized using either the Phillips or Wiener techniguee

§39tion XVII1

Newton at }.1.T. and this author at J.P.L. considered systems in which
saturation effects could so disrupt the system as to render operation worth-
less. Both solved the problem by applying a power level constraint at the
appropriate system point.

Section XIX

The +transient error of a system may be measured in many weys, depending
upon the circuit application. One common definition is the integral of the
transient-squared. Other definitions are ceftainly possiblce In switching

circuits the definition might be the lag time of the circuit -- the time
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between reception of a stop function and the first zero of the transient.

Qutput
Pt

G(t) . - e
:’C Input

t
t

le—y! +
Lag Time

Both definitions are considered in deriving the test transient‘perfo_rmanoe
under noise conditions,
Section XX

R. J. Parks at J.P.L. applied Wioner's solution to guidance systems
attempting to correct for external disturbances, and hindered by high
lovel measurement noise. This development demonstrated an important point
in philosophy: that £(t) is not neocessarily a signal and n{(t) not neces-
sarily a noise in the expression for error., Both may be noise or both
signals. The Wiener solution minimizes the "mzun square error" defined by
the error equation

E(s) = H(s) u(s) + (1 - H(s)) F(s)

where F(s) is earmarked not by the designation "signal™ but by being the
coefficient of 1-H(s)., Similarly, N(s) is defined by being the coefficient
of H(s). Any error equation of this form is treated by the Wiener solution.

Section XXI

The last section of the text discusses some related topics: multi-
dimensional systems, short-time error syStems, cross~correlation detection,
and decision networks. The discussion is qualitative in nature. No

solutions are presented.
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XV LATCHED FILTERS

The matched-filtor results presented here wers partly mown before, or
indopendently of, Wiener., The results were derived originally usiﬁg the Schwarz
inequality. The basic problem was the detacti&n of Imowm pulse shapes under
high noise condifions. The original statemont of the problem asked_?hat,.at
the output of the detoction systom, the peak siznal strength de as.large
as possible rclative to the output noise lovol, This criterionvis equiva-
lent to minimizing the mean output noise level under the constraint that
the system duplicate the signalts peak value,

The signal is assumed zcro until the (arbitrary) refersnce time t = O,
It then incrcases to its peak valus {or any other value of interest) at a
time to. The constraint v impose is thot at to the system yield f(to).

The system will not yield £(t) at other times unless by coincidencc. The

constraint is thercfore given Yy:

JO"
sto
f(to) = 1 e H(s) F(s) ds (91)
P TR
ZJ oo
J
- Sto -3t
= 1 e H(s) F(s) + ¢ ~"° H{-s) F(-s)
2] —_ _— = ds
e

The problem to be soived is the minimization of the output mean square noise

level under the constraint, i.c., the minimization of
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[ )

w .
~Jos (92)

o
S0t Aty = 1 | EaI*E, N O (. )} s

Using the sume plus and minus subscript notation and technique given in the

Wiener derivation,

Joo
2 S
o tAL(t) = 'Tll"J j{ﬂm_ §n + ;_[e"tomm + e~ %% F_HJ} ds (93)

~Joo

-which is minimized by letting H, — H, + E V(+ and difforentiating with
respect to £ at € = 0. The result is

j{q [ﬂ‘»§ tAe 3t°?] n, [ & R “M‘J} as

-Jo@ (94)

By exactly the same technique as was used in the Wiener derivation, we obtain

to
H(s) = 2 F(-s)
( ) tp Do(=s) (95)
Physically Realizable
- =$ d where X is the gain constant necessary to
where ‘yn(s) kPm( s) Q  and who gain Ty
yield the desired peak value.,*

Dwork solved the problcm without the restriction of physical realiza-
bility. His answer was H(s) = Ké—stoF(-S)/§n. This answer is physically-
realizable under certain specialized conditions, To mechanize a filter, Dwork

2

assumed§m =n“ and that £(t) had a finite time duretion. As seen above,

these expediencies are unnecessary. Under Dwork's conditions the H(s) becomes

‘*Note the caution on & Sbo usage in XII D.
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H(s) = Ke~%%0 p(-g) (96)

The matohing of H(s) to F(-s) results in the name "matched filter" for
this H(s)e A similar result was derived in the section on ourve fitting.
.The weigﬁting funotion matched the form of the signal funoction.

Th;ese'fiiters aro of great interest in radar prohlems when the gene-
ral form of ‘the return echo {or chain of echoes) is known, but we wish the
roturn signal to "stand out" of the noise as much as possible..

A more general result can be derived if the signal is assumed to have

a statistical part as well as the knovmn f(t). The answer is

H(s) = 1s éﬁ. -t@r + K F(-8) o~%% (o7)

Y (-s)

Physically
Realizable

P P =8+ L+ D+

Problom 35: Prove the result sbove,.

Problem 36: Show that thixfllter to maximize the ratio of the peak value
of £(t) =197UY 5 the presence of noise of spectrumnp /(l-s )

is given by
H(s) = K 1+°§ l1+s
an? A+ s

where the approximation e™* —Fr'x is assumed.

The impulsive response and ‘weighting function of a Dwork "matched
filter™ arc of a particularly intcresting forme From the Dwork expression

for H(s) we find the impulsive response to be
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L 4

Jor J oo

h(t) = 1 5%(_8) KQ-’to ds = X F(s)e"'ﬂ(to-t)ds -
= Kf(t,-t)
Z 3 73 o
~Jo® ~Joo
The impulsive response therefore starts vith a value f(t,) and traces the
signal backwards to its start,

) ()

< ' -~

2 ' ¥

¢ ) -

9] %, 4; to
+ o +

. FIGURE 17

Xatched Filter Impulsive Response

The weighting function dragged down the record thus looks like the first
part of £(t) up to time to. For non-flat noise, this characteristic is no

longer true.

h(qi)
£(t)

\}
N LA Me a A/\'(\
AN AR AR T A\

FIGURE 18

Matched Filter Superposition Intczration

Problem 37: Sketch the Dwork weighting function for a code group of three

equal-amplitude, equally-spaced pulses, assuming the event of
greatest interest is the appearance of the last pulse after
proper appearance of the first two pulses. Sketch the filter
output to the code group as it wnpcars. Fow might such a
filtor be realized using time-delgys? Assuning thal the contor
pulse is roctenguler of widih AT, show the effcct of “igpince~
rent of the center ruise from its cxpocted positione
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Ihe weighting function of the more general filter given in equation (95)
may be constructed from our knowledge of F(s) and k]’n('s). In equation (95)

(repeated below)

F(-8) ¢7%%

1
Bs) = §o) | Fol-a) PR (95)

the impulsive response of H(s) is given by the impulsive response of
Y.F(-s)e's‘to/?n(-s)] p.g, Passed through the network I/Yn(s). The im-
pulsive response of the bracket, however, is the response of a network
l/qln(s) to f(t) played backwards from t,. The graphical construction of
“the weighting function of H(s) is illustrated in the following sketches.

A function, f(t) = a + bt, and a network an(s) =ofo+ s 2
-+ 8 +I£ 8
o 1 2

were assumed,
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£(t)

Response of
[
k}ln(s) to

£t)

Impulsive
Response of

E._(_:ﬁ e—stu

Fuf-s) >.E.
Lot
s e
' 5(1:)
Inpulsive
Response of
H(s)
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Needless to say, it is difficult to mechanize a network H(s) which will
'yielg such an impulsive responses The mechanization of the unusual response
ﬁear t, would probably require dolay lines. Rising exponentials are per-
mitted in the interval 0<t<t,, but such exponentials are prohibited for
t greater than to. The designer must therefore obtain gzggz.oanceliation
of rising exponential terms after t,. |

The optimum network speoified by equation (95) is primarily useful as

a standard of comparison for propused substitutes. The optimum reali zable

network yields

2 2

fz(to) 1 F(-s)e 8%o F(s)eSt°
= Vo= i St ds
g2 2T} (-s) Jr.R. Y (s)
mine. .
~jo*°
Joe 2
2,;, 3 ﬂ P(-s)e~S%o ds
EAS ‘f(-s) P.R.

The optimmun non-realizable network ylelds

O min. 3

joo
£2(t,) 2
°f = F
= =l j Iz(;i' as
=Jjoe
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XV1_The Finite-Time, Finite-Order, Pilter

A finite-time filter is one whose impulsive reaponse lasts only for
an ihtgrval T, after which it is identically zero. Most readily-mechanizable
tranafer functions are expressible as quotients of polynomials in s. The
impﬁlsiva responsses corresponding to such transfer functions are thus sums
of»exponentials in time. Consequently most readily-mechanizable networks

do not exhibit finite-time dehavior.

NSRS finite-time

h(t) /4;////’ﬂ—\“\\;:\zi:--- infinite-time

The,bptimization of finite-time systems is no different than the
optimizatioﬁ‘of infinite-time systems, provided that our stat;stical averaging
is done in an ensemble fashion (over many experiments). For stationary inputs,
the spectral density approach is still legitimate; error spectral densities
may be used as before. For the non-stetionary or time-variant case, however,
wo must again distinguish between the mean square error averaged over an ensemble
and the mean équare error averaged over the interval T. This text will consider
only the ensemble average case, although'the iﬁterval average is more significant
for the finite-time case than for the infinite-time case.

The meaning of the expression, finite-order, is closely connected with the
application of c&nstraints to optimization problems., In previous sections we have
discussed constraints which specify response characteristics to a fairly general

c¢lass of "known" signal inputs f£(t). (Response at t_ . minimum lag time, ete.)



EP 204
- 93 -

A sti1l1 diffe:ent set of consiralnts were proposed by Zadeh and Ragazzinl

in the first of two articles on the optimization of finite-time systems:*

1,
A, -J W %

0
T
ay ._j T ¢ 4 (98a)
0
T

These n constraints ere ussd to guarantee distortion-free passage of a

signal function
= 3 2 n
£(t) a ¥ ajt + ayt® + ... At

through the system inasmuch as it is easily shown that the response of ths

filter to f(t) is given by

. e o0 (n
. - - t -+ P - n 2
o +(£) = Mo £(t) 4,1 | )+ My 2(t) + eee (F1)2u £ (1)
2! nl
Evidently if the best present value of f(t) is desired, A =1,
Ay Z/L(r = 0. Thz name, finite-order, is applied

*1. Zadeh & Ragazzini: An Extension of Yiener's Theory, J.A.P. Vol.21,July 1950

2. Zadeh & Ragazzini: Optimum Filters for the Detection of Signals in Noise,
. I.R.E., October 1950.
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to this filter because the polynomial is of finite-order, n. It might be
remarksd that anj function can be inserted in constraint form on the aystem
expressible as a sum of known functions of time such that the functional

form does not changs with a shift of the time origin. As an example:

fl(t) = a sin,B t4Dd cos/Bf (ﬂ known)

yields the constraints

T
o= S sin A7 n(?)a%
0

T
My = S cos 3 (7 (T )aT
0

The system output to fl(t) is

T
eout(t) = Sfl(t-’tf) n{?) aT
T

0
T

= 5 a a:lnr_(ﬁt -/3’5') w()aT + b cos (/Bt-/f’l')h(f)d'b’
0

0

= /'&a -a cosSt + b ain/it:l]

r
+/v(,b La sin/@t 4+ b coa’atj

Therefore if/ub =1 andu, = O, the output is fl(t). 1r /(,’tb =0 and/bca = -/f,

the output is fi(t), 1r b°u?’“a and/ub are zero, fl(t) will not pass through

the system.
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The various problems considered so far -- the Wiener smoothing problem,
the Viener operational preoblem, and the matched filter problem -- could all
be constrainedby speoifying h(t » T) = 0. The constraint speecifying a finite-

timo filtor is evidently

Joe
h(t>T) = 0 = _1_ H(s)eST o5t 44
273

It 11 ca5ily shown that this constraint adds the term

A | e~STy st
Y(S) \-'/(-S) P. R.

10 the H(s) already delcrmined for the various problems considered. The
ﬁ/(s) is the aporepriate one for the problem considered. TFor the Tiiener
2 S
casa 5 = + + -+ ; for the matched filter case
Y@=+ F v+ @ !
hed
lYaf® = @
nn
Inasmuch as not only h(t) but all of its derivatives and integrals
(from T) are also gzerc for f,>-T, the most general set of constraints weuld

result in the addition of a term

1 G(-s) 5-57 e-Stl

Y W (=)

P.R.

to the various H(s). The function G(s) must yet be determined; it repre-
sents a}goneralized Lagrange rultiplier. Unfortunately, the varicble t,
is eutangled in the answer; it is not obvious how to make the answer in-

dapondent of t;.
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Nonetheless, several clues ary provided:

l. The finite-time answor will oconsist of the infinite-time answer

plus some additional terms.

Lo
L]

The additional terms will probebly be constants, terms of the
form AS + 832 + eey and. terus arising frem the roots of the
numorater of \W{s).

3. The wei:htiaqy furction will be modified both withir the interwval

0< 1t «7T and outside o ite

Ragaszing and Zadeh sclved the prcblem in the time-domain. Thoir answers
for h(t) withizn the irterval 0 < t<<T are given below.-

If the prchiom iIs to find the Lest finite-tine filter Tfor the Vliener

case (f.']'xfs:-e §f and é zro laiown and whore the dosired oporation is Hl(s))
n

the answer is

h(t) :-ﬂ‘ 1 H1(s) (é )
oL L‘i’(s) XY ('S) P.R. (oom)
4 ‘ . K~
Ei Z Vo)
E,
\t - T)
=1
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If the problem is tho best matched filter, the finite-timo answer is

L X F(-s)a-éto
n(t) = f[ n(a] | "W {7 | P.R. (980)

L g = () B )
+ E Aye J oo+ Z By S (t) + ché {t-T)
j=1 j=1 51

where T 2>t .
In the purticular case where the constraints are given in the form of

equution 98g,

n Kl d ,t' Kq

Me)= Y e Zage TS 5w (984)
=1 - J=1 =1
Ko
- (
+ }_ c; o J)(t-T)
1

The varioas soluticns can be combined, inasmuch as the last two prob-
iams are solutions of the first problem under constraints. The swummation
terns are found as follows:

1. Vrite the \)V(e) eppropriate for the problem as a guotient of two

polynomialss

m

Il

:;(S) = qO + qls + ""qm S
R{s

¥ (s)

F
r rys + ....rp s¥

2. Then Kl m

K.
J

2
rocts of ' Q(s)} =0
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3 Tho cocfficients Aj, Bj’ Cj’ end D, must be found using the

J

construint equations and the appropriate optimization equations#

(=
“doener:
Desired

moreion, | MU QT = | () [ ety 4 P o) 0
1s hl(‘lf‘b

-0°

Vatclioad
Filter:

n(T) P (+-TWT = £t -t)

|
|

}\o + }{it + ....;\ntn

()1'5 rust also Le deteriined)

Finite
rder:

I

W) P (6-T)at

ol

Ragezzini and Zadeh concidered the ¥iencr-plus-finite-order filter in their
first article and the matched filter in their second.

The finite-time filter is subject to the same difficulties of mechani~
zation that plagued the matched filter. It is useful as a standard of
comparison, nonetheless.

The finite-timo filter is useful in solving the turn-on problem. The
turn-on problem asks for the best filter such ﬁhaf the mean squaro error is
minimized over the interval from t = O (turn-on) to the present time t = T,
The turn-on filter is therefore a time-variaat one depending on tho para-
meter To

The finite-time filter is also useful in data-reduction work in which
the time intorval is lidted during which certain asgsumptions might be

valide. For example, ccasider the problem of fitting polynomials to

*Rcadily deriveble usiug the tzelmique jiven in XIT E. (See 85)
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sections of a curve of complex shape, The polynomials are assumed valld
only for short intorvals. A finite-time weipghting function of appropriate

duratiorn, T, will properly perform the fitting.

Problom 58a: What is the optimum finite-time filter to pass a_+ bt un-
' distorted in the prescence of noise én = 20,17
L5 |
Problem 38b: VWhat is tho optimum finite-time filter to find the derivative
.of a + bt, undistortad, in the presence of noise (En = 2u 0-!—1 2

ol —s
Problem 38¢: Find the answers for parts a and b for a noise spectrum
2
E =of - s
n ° That is the answer if o =/5 ?
o o

Bo - s° )
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XVII QUASI-DISTORTIONLESS NETV.CRKS

Networks are quite common which produce no signal distértion in the
steady state. A transfer function H(s) which satisfies H(0) = 1 will pass
DC undistorted after the transient has dled out. Similarly we may design
networks which pass certain sine waves and reject others. One particular
notwork has recently come into prominence because of its utility iu short
time duration problems. If a signal is so slowly varying that the experi-
ment is completed long bofore s "cycle" might occur, an expansion of the
signal in Fourier coefficients is almost meaningless, A much more legiti-
mate oxpansion would be in powers of t. The particular network which passes

polynomials in t undistorted in the steudy state is called a quasi-distor-

ticuless network. Customarily the name, quasi-distortionless, is applied
only to networks which leave the polynomial unaffected in the steady state.
It is certainly possible to perform operations such as time delay or dif-
fexentiation without steady-state distortion, but these networks are not
conmonly cailed quasi-distortioniess. The quasi-distortionless network
van perform other duties at the same time. Noise may be reducedjbéO cyocle
hum way be rejocted.

The necessary condition for a network to be quasi-distortionless to
a poiynomial of order n is that its transfer function have matched nume-

rator and denominator coefficients to s, The network transfer function

in equation 99 is quasi-distortionless tO'tz.

2 3
a,ta, s+a,s5”° + g,
a(s) = _° 1 2 5 2 (99)
a°+als +3952+b353+b484

o
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The proof: 1In the steady state we may juggle the transfer function equatien

such that all s's represent differentiation.
®ut H(s) ®in
- 2 3
(ag + 8] 8 + 8y 82 + by 8° + by 82y = (8o + 8y 8+ 8y 87 + a3 87)esy

if e ¢ = o, = A + ,5 t+ Vt? » the equation is satisfied identically.

Notice that the values of the a's and b's have not been spocified. The
choice of the a's and b!s depends. upon the further duties of the network and
upon the allowable transient time of tho system. The most useful extra duty
of the quasi-distortionless network is noise reduction. For this purpose the
quasi-distortionless network alsno mst be optimized, although such an opti-
mization is not very direct. Signals are rarely polynomials for more than a
certain time interval. During this interval we wish the starting transient
to die out as fast as possible. On the other:hand, a quick transient implies
a short-time weipghting function end a wide-band system. The wide-band per-
mits a great deal of noise to pass through the system. The engineer mast
find the best compromise.

Quasi-distortionless networks are actually optirum to & particular class
of specctral densities. Remembering that a flat spectrum consists of a series

of impulses, we can sct up the following table.

SIGHAL SPIZCTRAL DIISITY POSSIBLE TIME FUNCTION
N impulses

2

-1/(s%) steps
4

1/s ramps

(l/szn)(-l)n sections of polynonials
polyn
of degree B -
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The steps, ramps, etc, occur in a random manner as we have seen earliér. The
noise spectral density apparcntly does not affect the faot that the H(s)
specified for smoothing such signals are quasi-distortionleés in form.*
Inasmich as the networks are determined by the Wiener operation, all co-
efficients are speoified. No further engineoering compromising 1s necossarye

Problem 3Dz Show that quasi-distortionless networks result as the optimum
- H(s) for the following signal and noise spectral densities.

S

§im

-1/%2 g2
-1/s2 _lié;.
1l-s

+1/%4 £;2!

The mean square signal values in all these cases are infinite

due to the good probability (infinite DC energy) that the signal
will drift to + o©. Replacing s with™s: +Q in'the signal-spectral
densities will result in non-quasi~distortionless filters, Thus,
the quasi-distortionless filter is a limiting case.

* Shown by example only.
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XVIII THE SATURATION CONSTRAINT

Practical systems are linear only within certain power level limits.

k3
X

A

system designed to handle 1 watt of power will ususlly satvrate partially by

5 watts and totally by 10 watts.

The optimum system, as discussed to this point, has assumed perfeot

linearity of all components,

Occasionally this assumption can lead to ex-

oessive power levels within the systems As an example, consider designing

H(s) in the system below,

=)

3};‘1‘ =(ak2

H(s) 1
P
1+ s —o0 Output
Control
FIGURE 19

A Saturable System

In a perfectly linear system, H(s) = ¥ + s.
to the output power level, neither of which
at the control point, howsever, is infinite.
metor is unavoidable.

The best solution to such a problem is

The input power level is equal

is infinite. The power level

 Saturation of the network or

the one which minimizes the

' 2
ocutput error but keeps the control point power,v<72'. within specified

limits. The output error is given by
J=° ,
2 2
cé' — 1 1 - H(s) Hm(sﬂ aéf

Hoo

¢ ds (100)
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whero Hﬁ is the motor transfer function 1/{1 +s). The power level at

the control point is

joo
2 2
g = 27%3 Jlﬁ(s)l §ﬁ, ds (101)

c
~Jdoo
The quentity to be minimized is, thercfors,
Joe \ )
2 2 :
g+ A0, = ;2 { eenel A H(,..)}} S o (o)
~Joo

The minimization might be done by the standard technique., A useful short-
cut may be used in cases similar to this, however. The shortcut consists
of re-writing the equation of interest (102) so that it rescmbles an equa-
tion that has already been solved. In this particular case we note the
general resemblance of cquation 102 to the ecquation doscribing the mean

square error in the standard Wiener smocthing prodlem?

joo
2 2
5 - z;j' {]1-H(s)l §ff+)n(s)} §m ds
-5

“In this standard smoothing equation, éﬁ‘ and é are complctoly speci-
nn

fied, H(s) is to be found. A substitution W (s) = H(s) HM(S) yields

joe
2 2 2 z
o - haa’® Aot 3 }
£+ AO —— { £
R re ) 2 ds (103)
-j&

2
This problem has already been solved for LJ(s) if éff/l Hu(s)’ is thought
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of as an "equivalent noise spectrum”. Using this shortcut, it is straight-
- forward to show that

1 By (-8) ¥ (s)
H(s) = \*)F(s)q}m(s) :;’M(-a) F (104)

hysically
Realizable

_ - 2
where \f/F(S) (VF(-S) = é o and where }Vu(s)q)}.‘.(-s) = (R ""Hu(ﬂ), )
In the problem illustrating control of a particular motors

1

1
a(s) = (1 +s)| Gy + il \/’;‘(T.'-rl/—':_]

If the power constraint were not present { A = 0) wo would obtain the

oxpectod answer H(s) =1 + s, If tha power constraint is very severe
1
AQ +)

The value of A is chosen to yield the specified O'c-

(large values of A ) then H(s)~> ", describing an attenuatore

The saturation constraint can usually be applied and solved in the
shortcut manner illustrated. .The equation to be minimized is re-written
in the standard smoothing form. New equivalent signal and noise spectral
‘densities are defined. The smoothing answer is written immodiately and
used to find the answer to the original problem.
Problem 40: Solve the standard smoothing problem under the constraint that

the output noise power be limited to a specified value, Notioce

that this problem is equivalont to weighting noise error an
signal error differuntly. :
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Problem 4: Solve for the II(s) giving the minimm output noise level in the

transmission system below. Assume that f‘= «>. s* and
§n =‘,3‘1$"" and that the transmitter power is limited to a

fixed value, PT

1
£(t) H(s) n(t) ST Output

Transmitter Receiver
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XIX TRANSIENT ERROR MINIMIZATION

The optimization technique may be applied to other problems than the
minimization of mean square error. Ehgineers designing oontrol systems are
usually interested in a design giving the minimum transients to oertain
specified input signals. The definitions of minimum transient are varied.
One common specification asks that the integral of the square of the iran=-
sient be as small as possible.* If £ (t) is the transient, £(t) the lmom

input, and H(s) the system transfer function, themn
oo Joo

Transient Error = Ez(t)dt = T:;' . Jl I—H(s)lz, F‘(s),2 ds (105)

-J oo
If the minimization of this integral were the only requirement there would
be no problem. H(s) = 1 satisfies this condition. Typically, the constraints

are those of proper performance in the prdésence of noise or operation within

a specified power levels

» The definition of transient error is almost like the definition of
signal distortion in the spcctral density case, except that in the latter
case, we tako a time average.

o2
Transient Error = E7°(¢)at

T
Signal Distortion 2
in Spcctral Density = 1lim 1
Problemrs Ty T E (t) at
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For example, consider minimiiing the transient error of tho system of figure 19

. 2
under the condition that the output noise lovel be less than 0'o .

£(t)
n(t)

H(s) Output

FIGURE 19
Illustrative System

The integral to be minimized is therefore

o0 all
€ (e + Ac? = 1 }1-H(s)lzlp(s)]2 + Ré {H(s)lz ds
° 7473 ot

e -joo (206)

The equation is almost an exact copy of the Wiener smoothing problem equation.

The. answer is therefore

o = 1 [l
Y (s) Y (s) Physically Realizable (107)

2
Wherel\u(s)‘ = ,F(s)’z “'A én anpd where R is so chosen that the output noise
level be less then 0'02. Notice from equations 106 and 107 that the solution

is the same as that for a signal spectral density éff = n‘F(s),z where n = 1,

Therefore the Wiener solution minimizes the transient error to a single oc-

currence of \Vﬂ‘(s) where‘qu(s)‘z = §ﬁ.(s).

Problem 4¥: Minimize the mean square noise output of a system under the con-
-. straint that the transient error due_to a gtep input be less than

'some specified constant E. Assume én = n*,
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Problem 43: Minimize the mean squere noise output of a system under the doudble

constraint that the transient error to a step be E; and to a
ramp, Epe Asswnie EE = n2,

The definition chosen for transient error depends upon the system. For

example, consider the protlem of quick-closing a switch with a step input

badly contaminated with noise.

‘1
\/"\/\ t

Assune that the sviteob closes and locks upon reception of a voltage of level V.,

The criterion for optimization is the minimization of the lag time of the cir-

cuit under the constraint that the output noise level be less than (V/iO)zi

The 1ab tlma is defined as the time intervel between the start of a {noise-

free) step and the instant that the circuit output first reaches V.

~
|

S

laz time 'to
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The time that the circuit reaches V is given by

Jo°
-
v = 1 (s)|{ 5 e%%o g4 108
1 [10)] . (108)

-Joe
The problem is considerably simplified by use of the symmetry condition of
the calculus of variations, Instead of minimizing t_, with the output noise
level fixed, minimize the output noise level with t, fixed. Fixing to’
however, is equivalent to the constraint & (to) = 0, Therefore the integral

to bo minimized is

jeo
2 2
O—OU -+A€(to) = 1 H(s) i ds
: {fisorrs,

-jeo

j oo
+ 1 1-8(s)|v e%%0 + }1-m(-s -5t
Sk [(ﬂz *EH()‘_’S)e o ds

~joo

The constraint is written as functions of H(s) and H(~-s) for convenience. The
integral equation, however, is exactly the same as that used in the matched

fiiter derivation. The answer is therefore

i(s) = KX V/s e 5%0

o) | Y05

(109)
P.R.
. . 2 3!'5'
where K is a gain constant to be determlned,l\y (s)l = and vhere t, is
n n
the lag time., The solution is completed by finding the relationship between

the output noise level end t,. If én = nz, the best h(t) is a constant of
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2 2
hei.ghtvl/to lasting for to scoondses The output noise level is U'; =n /to.
The output to a stop input is a ramp function, O at t = 0 and V at too

Aftor t_,the output is a constent, V. Setting 0"02 = (V/JLO)2 as origi-

nally spoacified, to = 100112/\12 seconds,
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XX THE DESIGN OF SERVOMECHANISMS

Twe major techniques have been presented which may be used to design
servomechanisms operating in the presence of interference., The first is
the Phillips techniques The meon square error of the system is expressed
as a functioﬁ ofﬂtﬁe input spectral density constants and of the adjustable
parametors of the system., The mean squere error is then minimized by proper
ad justment of the parametera, The complete form of the system is specified.
The second ma jor technique‘sfems from Wiener's optimization solution.
The system is now assumed known except for a transfer function H(s); It is
the goal of the technique to specify H(s) completely. In a servomechanism,
such a specification determines the loop transfer function, the loop gain,
and the loop transient behavior., For example, consider the simple servo

illustrated below,.

]t ‘
Input g n((t% >(= Hi(s) » Output
H(s)
FIGURE 20

A Simple Servomechanism
Given Hy(s), what is tho best design for H(s) to yield the minimum mean
square following error? The solution here is most simply achieved by re-

placing the whole servo with {J(s)e.
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1
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|
|
'

1 [
' '
£(t) ! ) 1
Input ©— 205 : © Hy(s) ; —~0 Output
1
\ ‘
] !
: H(s) :
. 1
- - = i;(;)— - -
ws)o t. - 1 éf\f +éfﬂ = Hl(s)
i A ﬂ/(-sj—_ Physicelly 1 + Hy(s)H(s) (110)

Realizable

Xnowing W(s) and Hy(s) we solve for H(s) to complete the problem. The

“important feature of thié tochnique is the cogglete specification of H(s)

and consequently of the whole loop.

Servomechanisms designed in this manner quite often run afoul of power
limitations. As we have seen*, however, power level constraints may be added
without difficulty and the problem usually solved by defining equivalent
noise and signal spectral densities.

If tho servo is asked to perform an operation, HZ(S)’ rather than simply

following the input, the best design is evidently given by

mS)Optimum = 1 (§ff + §I‘n)ﬁz(s)

Pis) = _ 7
V (-s) Physically T“1~H1(SFH(85
Realizable
(111)

*Scction AVIIT
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The foregoing illustrative serve is a quiot sorvo in that no noise or
disturbance is introduced within the loop itself. The problem of the noisy
servo can also be solved, however, This solution was first demonstrated to
this author's knowledge by R. J« Perks of J.P.L. Consider thg following

noisy servo,.

N o |
nput o 7 (%) - 1(s) —3 Output
H(s)

FIGURE 21

A Noisy Servomechanism

The second noise, nz(t), might be méasurement error of the output such as
poetentiometer noise from an output position indicator. If the servo is
connected togother by radio links, n,(t) might be atmospheric static. For
illustration, assume the servo is trying to follow f(t) and that all signals

and noises are irdependent of each other. The error of such a system is:

E(s) -{;__1 ny + 1 F ~ no -F (112)

HHy
1+HH T+ HE T+ HH

The problem will be solved by reducing it to an equivalent smoothing problom#*

* For a sinmpler illustraticn of this methol of solution see section XVIII.
Roducing a problem to the equivalent standard smoothing problem lets us use
the standard smoothing answer. The direct method involves another complote
derivation,
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This particular reduvction is especcially intercsting bocause it {llustrates
the use of cross-spectral densities in a solution even though all the ori-
tinal inputs are assumad uncorrclated,

Reviewing the quiet servo, notice that the solution was simplified by
using [J{(s) instead of H(s) before starting the operations of factoring, otoe.

The noisy servo solution is quite similar. The substitution is slightly

different,.

Le = _Hs)m(s) 113
t W(s) T (113)

Then

&(s) = (1-TW) nyBy + (-W)EF — Wi, -F (114)

= (1-W) [Hlnl + HlF-J - winyr ]

The e¢quivalent signal and oquivulent noise are defincd by analogy to the

simple smoothing error equation:

E(s) = (1-WF) r'(s) + Wn'(s) (115)
Thus, the equivalent signal and noise are

Equivalent Signal* = Hjn, + HiFd P (1186)

Equivalent loise* =—<%9 + ﬁ)

HNotice the cross-correlation between equivalent signal and equivalent noise

due to the prescnce of F in both functionse.

* Neither the equivalent signal nor the equivalent noise mgy be functions
of the unlmovm H(s) by definition of the basic Viiener problem.
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Yiriting thc equivalent (primsd) spectral densities:

§f'f' §mlnl‘ﬁllz - 1'2§ff
& ¢

n'n? = ngnp f (117)

tA

=—{1(~s) -2 @
n'g’ FF

=-( 8(a) - 1) ¢

The solution may be written by analcgy to the simple smoothing problem

FoH

onswer,
= 1 - § 1§ * § in?
W (s) e _ ,_f__,f.’._ R A (118)
\P (-s) Physically
Realizable
where
! /
5 -s) = + + +
"’J (s) ('U( ) é’f‘fv érlnl én'fl n'n® (119)
and vhere
Wis) = Hls) Bs) (120)

1+ Iil(s)-H(s)
An interesting point is driven home if we allow f(t) to be zero. No
formal signal enters the network, only disturbunces. The error of thre
csystem is still cxpressible in the equivalent smoothing form. The equi-

valent signal is nyd, and the equivalent noise np. NO cross-spectral

1
densities exist.
THUS, ANY ERROR EXPRISSION RESHEDLING THE ERROR EXPRESSION IN THE

BASIC WIiniZR PROBLiZY LAY DE JININIZED BY THb VWIELKER OPTIMIZATION EQUATIOR.
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Problem 44: Design ths system below to best ocountoract wind disturbances
under severe measurement error conditions.

Alrcraft
Winds Hi(s) = _1
e 1 ¥3s —
® =K
ww -sz A s
- ™
3 £
€
£ H(s)
hd Yeasurcument
Ground Krror 2
Control § -z

411
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AXI RELATED TOPICS

This text has endeavored to present certain fundamentals of lincar
system design. At leust four related subjocts have been almost totally
ignored.

A. Multi-dimensional Systems

The systems discussed have all boen one-dimensional, A multi-
dimensional system would be one where the best opcrations on many different
(tut related) phenomena were to be specified.

B. Short-time Error Systens

In certain cascs in which ths total timo of opcration is short com-
parcd to tho time nccessary to reach stoady state, the long-time average
of Cr;& may be unimportant, It may even be profitable to design an unstable
system. As an example, consider tho integration ¢f a function in the
prcsence of flat noise. Viith the system at rest until t =0, the output
error at t = 0 will be zcro. At t = ©2 , however, the mean square error
is infinitec. At intecrmediste times, the expectod error may still be
acceptable.

C. Cross-correlation Dotection

If the exact tine dependence of a signal is lnown except for a few
parameters, the parameters mav be determined by correlating thc total
input with a loczl signal or set of signals. For cxample, a sine vave
may be det:cted in thc presence of noise by cross-correlating the total
input with a local sine wave in phase with the incoming sino wave. The
technigue is widely used under the nanes product detection ard cross-

corrclation detcction., Such detoction systems are inhercntly Seiter



EP 204
- 112 -

than auto-correlation detectors but are more complox in requiring a stable

*
local source,

- AUTO-CORICLATION DUTUCTION

Input . 7l*tu1tip1ier Lo-Pass ;
Filtor |-——Output
n(t) + a(t)+i]sin wt | _

a(t)<l

Output = a(t) + nz(t)'+ smaller torms

CROSS-CORRELATION DETZCTION

: ]
Input > Multiplier Lo-Pass
n(t) + E‘(t)‘ﬂ] sinWt -———-—-——-T—“ : Fllter'—‘*“‘—'Output

Local Oscillator
sin (Ot

Output = a(t) + smaller terms
FIGURE 22

A Comparison of Auto-Correlation Detection with Cross-Correlation Detection

D. Deciéion Networks

The cross-cerrelation detector is a Zood example of a system uc.ng
cdnsiderably more information them provided by spectral demsities. Im
Figure 22, for example, the exact frequency and phase of the modulation
sine wavé were knowne

Decision networks provide another example of a high degree of a priori

knowledge. If little but the spectral density of a signal is known, the
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system must be able to produce an infinity of possidle output values. On
tho other hand, if it is known beforehand that the signal is either on or
off, and that it consists of a pure sine wave of known amplitude and phase,
the problem is quite diffcrent, Networks vhich decide the question of the
presonco of functions are examples of tho geoneral class, “decision net-
works." Such networks aro often non-linear. The decision is often -
indicated by the opening or closing of a switche Deccision networks are
dosigned using the statistical tachniques of Noyman-Psarson, Siegert,

and l/ald,
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